Let $\mathfrak{M}$ be a free metabelian Leibniz algebra generating set $X=\{x_{1},...,x_{n}\}$ over the field $\mathfrak{K}$ of characteristic $0$. An automorphism $ \phi $ of $\mathfrak{M}$ is said to be normal automorphism if each ideal of $\mathfrak{M}$ is invariant under $ \phi $. In this work, it is proven that every normal automorphism of $\mathfrak{M}$ is an IA-automorphism and the group of normal automorphisms coincides with the group of inner automorphisms.
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Research Article |
Yazarlar | |
Yayımlanma Tarihi | 16 Mart 2024 |
Gönderilme Tarihi | 15 Mart 2023 |
Kabul Tarihi | 9 Ekim 2023 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 73 Sayı: 1 |
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.
This work is licensed under a Creative Commons Attribution 4.0 International License.