Numerical Simulation on Thermal Stresses in An Annular Fin Made of Isotropic Material
Yıl 2018,
Cilt: 33 Sayı: 3, 67 - 80, 30.09.2018
Ali Yıldırım
Durmuş Yarımpabuç
,
Kerimcan Çelebi
Öz
In this study, temperature distribution and thermal stresses of an axisymmetric thin annular fin with rectangular profile made of isotropic and homogeneous material are determined by using Complementary Function Method and Pseudospectral Chebyshev Method. Both of the methods are compared with analytical results obtained using Bessel functions and thermoelastic theory. Error analysis of these numerical methods at different partition points is shown using Euclidean norm. It is observed that pseudospectral Chebysev method approximates to the analytical results more rapidly with increasing the number of points.
Kaynakça
- 1. Biswas, G., Mitra, K., Fiebig, M., 1994. Heat
Transfer Enhancement in Fin-Tube Heat
Exchangers by Winglet Type Vortex
Generators, Int. J. Heat Mass Transfer, 37(2),
283-291.
- 2. Kraus, A.D., Aziz, A., Welty, J.R., 2001.
Extended Surface Heat Transfer, John Wiley
and Sons, New York.
- 3. Incropera, F., Dewıitt, D.P., Bergman, T.L.,
Lavine, A.S., 2007. Fundamentals of Heat and
Mass Transfer, John Wiley and Sons, New
York .
- 4. Mallick, A., Ghosal, S., Sarkar, P.K., Ranjan,
R., 2015. Homotopy Perturbation Method for
Thermal Stresses in an Annular Fin with
Variable Thermal Conductivity, Journal of
Thermal Stresses, 38(1), 110-132.
- 5. Wu, S.S., 1997. Analysis on Transient Thermal
Stresses in an Annular Fin, Journal of Thermal
Stresses, 20, 591-615.
- 6. Gardner, K.A., 1945. Efficiency of Extended
Surface, Trans. ASME, 67, 621-631.
- 7. Brown, A., 1965. Optimum Dimensions of
Uniform Annular Fins, International Journal of
Heat and Mass Transfer, 8, 665-662.
- 8. Yang, J.W., 1972. Periodic Heat Transfer in
Straight Fins, Journal of Heat Transfer, Trans.
ASME, 94, 310-314.
- 9. Aziz, A., 1975. Periodic Heat Transfer in
Annular Fins, Journal of Heat Transfer, Trans.
ASME, 97, 302-303.
- 10. Aziz, A., Enamul Huq, S.M., 1975.
Perturbation Solution for Convecting Fin with
Variable Thermal Conductivity, Journal of
Heat Transfer, 97, 300-301.
- 11.Krane, R.J., 1976. Discussion on a Previously
Published Paper by Aziz A. and Enamul Hug
S.M., Journal of Heat Transfer, 98, 685-686.
- 12.Muzzio, A., 1976. Approximate Solution for
Convective Fins with Variable Thermal
Conductivity, Journal of Heat Transfer, 98,
680-682.
- 13. Razelos, P., Imre, K., 1980. Optimum
Dimension of Circular Fins with Variable
Thermal Parameters, Journal of Heat Transfer,
Trans. ASME, 102, 420-425.
- 14. Ullmann, A., Kalman, H., 1989. Efficiency and
Optimized Dimensions of Annular Fins of
Different Cross-section Shapes, Int. J. Heat
Mass Transfer, 32(6), 1105-1110.
- 15. Campo, A., Harrison L., 1994. Prediction of
Safe Tip Temperature in Uniform Annular Fins
for the Design of Thermal Exchnage
Equipment Via Sympolic Mathematics, Int.
Commun. Heat Mass Transfer, 21(4), 531-538.
- 16. Zubair, S.M., Al-Garni, A.Z., Nizami, J.S.,
1996. The Optimal Dimensions of Circular
Fins with Variable Profile and Temperaturedependent
Thermal Conductivity, Int. J. Heat
Mass Transfer, 39(16), 3431-3439.
- 17. Campo, A., Stuffle, R.E., 1996. Symbolic
Mathematics for Calculation of Thermal
Efficiencies and Tip Temperatures in Annular
Fins of Uniform Thickness, Int. J. Heat Mass
Transfer, 40(2), 490-492.
- 18.Kundu, B., Das, P.K., 2001. Performance
Analysis and Optimization of Annular Fin
with a Step Change in Thickness, Journal of
Heat Transfer, Trans. ASME, 123(3), 601-604.
- 19. Chiu, C.H., Chen, C.K., 2002. A
Decomposition Method for Solving the
Convective Longitudinal Fins with Variable
Thermal Conductivity, International Journal of
Heat and Mass Transfer, 45, 2067-2075.
- 20.Mokheimer, E.M.A., 2002. Performance of
Annular Fins with Different Profiles Subject to
Variable Heat Transfer Coeficient, Int. J. Heat
Mass Transfer, 45(17), 3631-3642.
- 21. Bertola, V., Cafaro, E., 2003. Cooling Fin
Design, Journal of Thermophysics and Heat
Transfer, 17(4).
- 22. Arslantürk, C., 2004. Performance Analysis
and Optimization of a Thermally Nonsymmetric
Annular Fin, Int. Comm. Heat Mass
Transfer, 31(8), 1143-1153.
- 23.Kang, H.S., Look, D.C., 2007. Optimization of
a Thermally Asymmetric Convective and
Radiating Annular Fin, Heat Transfer
Engineering, 28(4), 310-320.
- 24. Soliman, H.M., Elazhary, A.M., 2008.
Comment on Cooling, Fin Design, Journal of
Thermophysics and Heat Transfer, 22(2),
319-320.
- 25. Iborra, A.A., Campo, A., 2009. Approximate
Analytic Temperature Distribution and
Efficiency for Annular Fins of Uniform
Thickness, International Journal of Thermal
Sciences, 48, 773-780.
- 26.Kang, H.S., Look, D.C., 2009. Optimization of
a Trapezoidal Profile Annular Fin, Heat
Transfer Engineering, 30(5), 359-367.
27. Arslantürk, C., 2009. Correlation Equations for
Optimum Design of Annular Fins with
Temperature Dependent Thermal Conductivity,
Heat Mass Transfer, 45(4), 519-525.
- 28. Aziz, A., Fang, T., 2010. Alternative Solutions
for Longitudinal Fins of Rectangular,
Trapezoidal and Concave Parabolic Profiles,
Energy Conversion and Management 51,
2188-2194.
- 29. Ganji, D.D., Ganji, Z.Z., Ganji, H.D., 2011.
Determination of Temperature Distribution for
Annular Fins with Temperature Dependent
Thermal Conductivity by HPM, Thermal
science, 15, 111-115.
- 30. Qian, J., Heat Transfer Analysis of Uniform
Annular Fin on Regular Perturbation Method,
Proc. Second Int. Conf. on Mechanic
Automation and Control Engg, IEEE 2211,
2011.
- 31. Peng, H. S., Chen, C. L., 2011. Hybrid
Differential Transformation and Finite
Difference Method to Annular Fin with
Temperature-dependent Thermal Conductivity,
International Journal of Heat and Mass
Transfer, 54, 2427-2433.
- 32. Darvishi, M.T., Khani, F., Aziz, A., 2016.
Numerical Investigation for a Hyperbolic
Annular Fin with Temperature Dependent
Thermal Conductivity, Propulsion and Power
Research, 5(1), 55-62.
- 33. Roy, R., Ghosal, S., 2016. Homotopy
Perturbation Method for the Analysis of Heat
Transfer in an Annular Fin with Temperaturedependent
Thermal Conductivity, Journal of
Heat Transfer, 139(2), 1223-1231.
- 34.Kundu, B., 2017. Exact Method for Annular
Disc Fins with Heat Generation and Nonlinear
Heating, Journal of Thermophysıcs and Heat
Transfer, 31(2), 337-345.
- 35.Yu, L.T., Chen, C.K., 1998. Application of
Taylor Transformation to the Thermal Stresses
in Isotropic Annular Fins, Journal of Thermal
Stresses, 21(8), 781-809.
- 36. Yu, L.T., Chen, C.K., 1999. Application of the
Hybrid Method to the Transient Thermal
Stresses Response in Isotropic Annular Fins,
Journal of Applied Mechanics, 66, 340-346.
- 37.Yang, Y.C., Chu, S.S., 2001. Transient
Coupled Thermoelastic Analysis of an Annular
Fin, Int. Comm. Heat and Mass Transfer,
28(8), 1103-1114.
- 38. Lee, H.L., Yang, Y.C., Chu, S.S., 2002..
Transient Thermoplastic Analysis of an
Annular Fin with Coupling Effect and Variable
Heat Transfer Coefficient, Journal of Thermal
Stresses, 25, 1105-1120.
- 39. Chiu, C.H., Chen, C.K., 2002. Application of
the Decomposition Method to Thermal Stresses
in Isotropic Circular Fins with Temperaturedependent
Thermal Conductivity, Acta
Mechanica, 157, 147-158.
- 40. Chiu, C.H., Chen, C.K., 2002. Thermal
Stresses in Annular Fins with Temperature
Dependent Conductivity under Periodic
Boundary Condition, Journal of Thermal
Stresses, 25, 475-492.
- 41. Wang, C.C., Liao, W.J., Yang, Y.C., 2013.
Hybrid Spline Difference Method for Heat
Transfer and Thermal Stresses in Annular Fins,
Numerical Heat Transfer Part B,
Fundamentals, 64(1), 71-88.
- 42. Tütüncü, N., Temel, B., 2013. An Efficient
Unified Method for Thermoelastic Analysis of
Functionally Graded Rotating Disks of
Variable Thickness, Mechanics of Advanced
Materials and Structures, 20, 38-46.
- 43. Baş, H., Keleş, I., 2014. Novel Approach to
Transient Thermal Stress in an Annular Fin,
Journal of Thermophysics and Heat Transfer,
29(4), 705-710.
- 44. Timoshenko, S.P. Goodier, J.N., 2003. Theory
of Elasticity, McGraw-Hili, New York, 1970.
- 45. Cengel, Y.A, Heat Transfer a Practical
Appraoch, McGraw-Hill.
- 46. Aktaş, Z., 1972. Numerical Solutions of Twopoint
Boundary Value Problems, Metu, Depart.
of Compt. Eng.
- 47.Agarwal, R.P., 1982. On the Method of
Complementary Functions for Nonlinear
Boundary-value Problems, Journal of
Optimization Theory and Applications, B36(1),
139-144.
- 48. Roberts, S.M., Shipman, J.S., 1979.
Fundamental Matrix and Two-point Boundaryvalue
Problems, Journal of Optimization
Theory and Applications, 28(1), 77-88.
- 49. Gottlieb, D., 1981. The Stability of
Pseudospectral-Chebyshev Methods, Mathematics
of Computation, 36(153), 107-118.
- 50. Trefethen, L.N., 2000. Spectral Methods in
Matlab, SIAM, Philadelphia, PA.
- 51.Bazan, F.S.V., 2008. Chebyshev
Pseudospectral Method for Computing
Numerical Solution of Convection-Diffusion
Equation, Applied Mathematics and
Computation, 200, 537-546.
İzotropik Malzemeden Yapılmış Dairesel Kanatçıklardaki Isıl Gerilmelerin Sayısal Modellemesi
Yıl 2018,
Cilt: 33 Sayı: 3, 67 - 80, 30.09.2018
Ali Yıldırım
Durmuş Yarımpabuç
,
Kerimcan Çelebi
Öz
Bu çalışmada, izotropik ve homojen malzemeden yapılmış, dikdörtgen profilli eksenel simetrik olan ince bir dairesel kanatçıktaki sıcaklık dağılımı ve ısıl gerilmeler Tamamlayıcı Fonksiyonlar Metodu ve Pseudospectral Chebysev Metodu kullanılarak elde edilmiştir. Her iki sayısal yöntem de, Bessel fonksiyonları ve termoelastik teori kullanılarak elde edilen analitik sonuçlarla karşılaştırılmıştır. Bu sayısal yöntemlerin farklı bölüntü noktaları için hata analizleri Öklid normu kullanılarak gösterilmiştir. Pseudospectral Chebysev yönteminin nokta sayısının artması ile analitik sonuca daha hızlı bir şekilde yaklaştığı görülmüştür.
Kaynakça
- 1. Biswas, G., Mitra, K., Fiebig, M., 1994. Heat
Transfer Enhancement in Fin-Tube Heat
Exchangers by Winglet Type Vortex
Generators, Int. J. Heat Mass Transfer, 37(2),
283-291.
- 2. Kraus, A.D., Aziz, A., Welty, J.R., 2001.
Extended Surface Heat Transfer, John Wiley
and Sons, New York.
- 3. Incropera, F., Dewıitt, D.P., Bergman, T.L.,
Lavine, A.S., 2007. Fundamentals of Heat and
Mass Transfer, John Wiley and Sons, New
York .
- 4. Mallick, A., Ghosal, S., Sarkar, P.K., Ranjan,
R., 2015. Homotopy Perturbation Method for
Thermal Stresses in an Annular Fin with
Variable Thermal Conductivity, Journal of
Thermal Stresses, 38(1), 110-132.
- 5. Wu, S.S., 1997. Analysis on Transient Thermal
Stresses in an Annular Fin, Journal of Thermal
Stresses, 20, 591-615.
- 6. Gardner, K.A., 1945. Efficiency of Extended
Surface, Trans. ASME, 67, 621-631.
- 7. Brown, A., 1965. Optimum Dimensions of
Uniform Annular Fins, International Journal of
Heat and Mass Transfer, 8, 665-662.
- 8. Yang, J.W., 1972. Periodic Heat Transfer in
Straight Fins, Journal of Heat Transfer, Trans.
ASME, 94, 310-314.
- 9. Aziz, A., 1975. Periodic Heat Transfer in
Annular Fins, Journal of Heat Transfer, Trans.
ASME, 97, 302-303.
- 10. Aziz, A., Enamul Huq, S.M., 1975.
Perturbation Solution for Convecting Fin with
Variable Thermal Conductivity, Journal of
Heat Transfer, 97, 300-301.
- 11.Krane, R.J., 1976. Discussion on a Previously
Published Paper by Aziz A. and Enamul Hug
S.M., Journal of Heat Transfer, 98, 685-686.
- 12.Muzzio, A., 1976. Approximate Solution for
Convective Fins with Variable Thermal
Conductivity, Journal of Heat Transfer, 98,
680-682.
- 13. Razelos, P., Imre, K., 1980. Optimum
Dimension of Circular Fins with Variable
Thermal Parameters, Journal of Heat Transfer,
Trans. ASME, 102, 420-425.
- 14. Ullmann, A., Kalman, H., 1989. Efficiency and
Optimized Dimensions of Annular Fins of
Different Cross-section Shapes, Int. J. Heat
Mass Transfer, 32(6), 1105-1110.
- 15. Campo, A., Harrison L., 1994. Prediction of
Safe Tip Temperature in Uniform Annular Fins
for the Design of Thermal Exchnage
Equipment Via Sympolic Mathematics, Int.
Commun. Heat Mass Transfer, 21(4), 531-538.
- 16. Zubair, S.M., Al-Garni, A.Z., Nizami, J.S.,
1996. The Optimal Dimensions of Circular
Fins with Variable Profile and Temperaturedependent
Thermal Conductivity, Int. J. Heat
Mass Transfer, 39(16), 3431-3439.
- 17. Campo, A., Stuffle, R.E., 1996. Symbolic
Mathematics for Calculation of Thermal
Efficiencies and Tip Temperatures in Annular
Fins of Uniform Thickness, Int. J. Heat Mass
Transfer, 40(2), 490-492.
- 18.Kundu, B., Das, P.K., 2001. Performance
Analysis and Optimization of Annular Fin
with a Step Change in Thickness, Journal of
Heat Transfer, Trans. ASME, 123(3), 601-604.
- 19. Chiu, C.H., Chen, C.K., 2002. A
Decomposition Method for Solving the
Convective Longitudinal Fins with Variable
Thermal Conductivity, International Journal of
Heat and Mass Transfer, 45, 2067-2075.
- 20.Mokheimer, E.M.A., 2002. Performance of
Annular Fins with Different Profiles Subject to
Variable Heat Transfer Coeficient, Int. J. Heat
Mass Transfer, 45(17), 3631-3642.
- 21. Bertola, V., Cafaro, E., 2003. Cooling Fin
Design, Journal of Thermophysics and Heat
Transfer, 17(4).
- 22. Arslantürk, C., 2004. Performance Analysis
and Optimization of a Thermally Nonsymmetric
Annular Fin, Int. Comm. Heat Mass
Transfer, 31(8), 1143-1153.
- 23.Kang, H.S., Look, D.C., 2007. Optimization of
a Thermally Asymmetric Convective and
Radiating Annular Fin, Heat Transfer
Engineering, 28(4), 310-320.
- 24. Soliman, H.M., Elazhary, A.M., 2008.
Comment on Cooling, Fin Design, Journal of
Thermophysics and Heat Transfer, 22(2),
319-320.
- 25. Iborra, A.A., Campo, A., 2009. Approximate
Analytic Temperature Distribution and
Efficiency for Annular Fins of Uniform
Thickness, International Journal of Thermal
Sciences, 48, 773-780.
- 26.Kang, H.S., Look, D.C., 2009. Optimization of
a Trapezoidal Profile Annular Fin, Heat
Transfer Engineering, 30(5), 359-367.
27. Arslantürk, C., 2009. Correlation Equations for
Optimum Design of Annular Fins with
Temperature Dependent Thermal Conductivity,
Heat Mass Transfer, 45(4), 519-525.
- 28. Aziz, A., Fang, T., 2010. Alternative Solutions
for Longitudinal Fins of Rectangular,
Trapezoidal and Concave Parabolic Profiles,
Energy Conversion and Management 51,
2188-2194.
- 29. Ganji, D.D., Ganji, Z.Z., Ganji, H.D., 2011.
Determination of Temperature Distribution for
Annular Fins with Temperature Dependent
Thermal Conductivity by HPM, Thermal
science, 15, 111-115.
- 30. Qian, J., Heat Transfer Analysis of Uniform
Annular Fin on Regular Perturbation Method,
Proc. Second Int. Conf. on Mechanic
Automation and Control Engg, IEEE 2211,
2011.
- 31. Peng, H. S., Chen, C. L., 2011. Hybrid
Differential Transformation and Finite
Difference Method to Annular Fin with
Temperature-dependent Thermal Conductivity,
International Journal of Heat and Mass
Transfer, 54, 2427-2433.
- 32. Darvishi, M.T., Khani, F., Aziz, A., 2016.
Numerical Investigation for a Hyperbolic
Annular Fin with Temperature Dependent
Thermal Conductivity, Propulsion and Power
Research, 5(1), 55-62.
- 33. Roy, R., Ghosal, S., 2016. Homotopy
Perturbation Method for the Analysis of Heat
Transfer in an Annular Fin with Temperaturedependent
Thermal Conductivity, Journal of
Heat Transfer, 139(2), 1223-1231.
- 34.Kundu, B., 2017. Exact Method for Annular
Disc Fins with Heat Generation and Nonlinear
Heating, Journal of Thermophysıcs and Heat
Transfer, 31(2), 337-345.
- 35.Yu, L.T., Chen, C.K., 1998. Application of
Taylor Transformation to the Thermal Stresses
in Isotropic Annular Fins, Journal of Thermal
Stresses, 21(8), 781-809.
- 36. Yu, L.T., Chen, C.K., 1999. Application of the
Hybrid Method to the Transient Thermal
Stresses Response in Isotropic Annular Fins,
Journal of Applied Mechanics, 66, 340-346.
- 37.Yang, Y.C., Chu, S.S., 2001. Transient
Coupled Thermoelastic Analysis of an Annular
Fin, Int. Comm. Heat and Mass Transfer,
28(8), 1103-1114.
- 38. Lee, H.L., Yang, Y.C., Chu, S.S., 2002..
Transient Thermoplastic Analysis of an
Annular Fin with Coupling Effect and Variable
Heat Transfer Coefficient, Journal of Thermal
Stresses, 25, 1105-1120.
- 39. Chiu, C.H., Chen, C.K., 2002. Application of
the Decomposition Method to Thermal Stresses
in Isotropic Circular Fins with Temperaturedependent
Thermal Conductivity, Acta
Mechanica, 157, 147-158.
- 40. Chiu, C.H., Chen, C.K., 2002. Thermal
Stresses in Annular Fins with Temperature
Dependent Conductivity under Periodic
Boundary Condition, Journal of Thermal
Stresses, 25, 475-492.
- 41. Wang, C.C., Liao, W.J., Yang, Y.C., 2013.
Hybrid Spline Difference Method for Heat
Transfer and Thermal Stresses in Annular Fins,
Numerical Heat Transfer Part B,
Fundamentals, 64(1), 71-88.
- 42. Tütüncü, N., Temel, B., 2013. An Efficient
Unified Method for Thermoelastic Analysis of
Functionally Graded Rotating Disks of
Variable Thickness, Mechanics of Advanced
Materials and Structures, 20, 38-46.
- 43. Baş, H., Keleş, I., 2014. Novel Approach to
Transient Thermal Stress in an Annular Fin,
Journal of Thermophysics and Heat Transfer,
29(4), 705-710.
- 44. Timoshenko, S.P. Goodier, J.N., 2003. Theory
of Elasticity, McGraw-Hili, New York, 1970.
- 45. Cengel, Y.A, Heat Transfer a Practical
Appraoch, McGraw-Hill.
- 46. Aktaş, Z., 1972. Numerical Solutions of Twopoint
Boundary Value Problems, Metu, Depart.
of Compt. Eng.
- 47.Agarwal, R.P., 1982. On the Method of
Complementary Functions for Nonlinear
Boundary-value Problems, Journal of
Optimization Theory and Applications, B36(1),
139-144.
- 48. Roberts, S.M., Shipman, J.S., 1979.
Fundamental Matrix and Two-point Boundaryvalue
Problems, Journal of Optimization
Theory and Applications, 28(1), 77-88.
- 49. Gottlieb, D., 1981. The Stability of
Pseudospectral-Chebyshev Methods, Mathematics
of Computation, 36(153), 107-118.
- 50. Trefethen, L.N., 2000. Spectral Methods in
Matlab, SIAM, Philadelphia, PA.
- 51.Bazan, F.S.V., 2008. Chebyshev
Pseudospectral Method for Computing
Numerical Solution of Convection-Diffusion
Equation, Applied Mathematics and
Computation, 200, 537-546.