Araştırma Makalesi
BibTex RIS Kaynak Göster

Categorization of Biostimulants: Current Situation in Turkey

Yıl 2016, Cilt: 31 Sayı: 3, 185 - 200, 30.12.2016

Öz

Biostimulants are the substances that are applied to plants as root, foliar and seed applications, which are enhancing plants’ growth, nutritional status, stress resistance, quality and yield. Biostimulants may contain organic, inorganic compounds and microorganisms together or as individual. Some of the ingredients of biostimulants maintain soil structure. Biostimulants are permitted to use in agriculture in Turkey since 2002, also their global market is estimated 2.91 USD by 2021, at a compound annual growth rate of 10.4% from 2016 to 2021. Most of the industries of mentioned products are located in USA and Europe. In general; biostimulants do not directly affect pests, so they are not classified as pesticides. In Turkey; these products are added to Official Newspaper’s (17th of February 1999, Issue No: 23614) “Pesticide Like Materials” definition, following the signification of “insect traps” as “plant activators” in 2002. Biostimulants are not classified as fertilizers regardless of they comprise nutrients or not. Their classification is still uncertain although some researchers specified the important categories. These categories are; humic and fulvic acids, amino acids and other N containing compounds, seaweed and plant extracts, chitin and chitosan biopolymers, inorganic compounds, beneficial fungi and beneficial bacteria. This review examines the biostimulants under the mentioned categories and their effects on plants’ physiology, nutrient uptake and stress tolerance.

Kaynakça

  • Abd El-Fattah, D. A., Ewedab, W. E., Zayed, M. S., Hassaneina, M. K. Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculants. Ann Agric Sci 2013, 58:111–118.
  • Adani, F., Genevini, P., Zaccheo, P., Zocchi, G. (1998) The effect of commercial humic acid on tomato plant growth and mineral nutrition. J Plant Nutr 21:561–575.
  • Ahmad, R., Lim, C., J., Kwon, S., Y. (2013) Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol Rep 7:49–57. doi:10.1007/s11816-012-0266-8.
  • Alam, M., Z., Braun, G., Norrie, J., Hodges, D., M. (2013) Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can J Plant Sci 93:23–36.
  • Albuzio, A., Nardi, S., Gulli, A. (1989) Plant growth regulator activity of small molecular size humic fractions. Sci Total Environ 81(82):671–674.
  • Anjum, S., A., Farooq, M., Wang, L., C. (2011a) Gas exchange and chlorophyll synthesis of maize cultivars are enhanced by exogenously-applied glycinebetaine under drought conditions. Plant Soil Environ 57:326–331.
  • Anjum, S., A., Wang, L., Farooq, M., Xue, L., Ali, S. (2011b) Fulvic acid application improves the maize performance under wellwatered and drought conditions. J Agron Crop Sci 197: 409–417.
  • Anonymous, (2016) http://www.marketsandmarkets.com/PressReleases/biostimulant.asp
  • Anonymous, EBIC (2013). Economic overview of the biostimulants sector in Europe. www.biostimulants.eu/2013/04/2013-overview-of-the-european-biostimulants-market/
  • Ashraf, M., Foolad, M., R. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216.
  • Asp, H., Berggren, D., (1990) Phosphate and calcium uptake in beech (Fagus sylvatica) in the presence of aluminium and natural fulvic acids. Physiol Plant 80:307–314.
  • Aydin, A., Kant, C., Turan, M. (2012) Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr J Agric Res 7:1073–1086.
  • Aziz, G., Bajsa, N., Haghjou, T., Taule, C., Valverde, A., Mariano, J., Arias, A. (2012) Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay. Appl Soil Ecol 2012, 61:320–326.
  • Baharlouei, K., Pazira, E., Solhi, M. (2011) Evaluation of Inoculation of plant Growth-Promoting Rhizobacteria on Cadmium. Singapore: International Conference on Environmental Science and Technology IPCBEE vol.6 IACSIT Press.
  • Banerjee, M., R., Yesmin, L., Vessey, J., K. (2006) Plant growth promoting rhizobacteria as biofertilizers and biopesticide. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 137–181.
  • Beaudreau, Jr., D., G. (2013) Biostimulants in Agriculture: Their Current and Future Role in a Connected Agricultural Economy. Biostimulant Coalition, 2pp.
  • Befrozfar, M., R., Habibi, D., Asgharzadeh, A., Sadeghi-Shoae, M., Tookallo, M., R. (2013) Vermicompost, plant growth promoting bacteria and humic acid can affect the growth and essence of basil (Ocimumbasilicum L.). Ann Biol Res 4:8–12.
  • Bhardwaj, D., Ansari, M. W., Sahoo, R. K., Tuteja, N., (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories 2014, 13:66 http://www.microbialcellfactories.com/content/13/1/66. 10pp.
  • Bi, F., Iqbal, S., Arman, M., Ali, A., Mu H. (2011) Carrageenan as an elicitor of induced secondary metabolites and its effects on various growth characters of chickpea and maize plants. J Saudi Chem Soc 15:269–273.
  • Blunden, G., Jenkins, T., Liu, Y., W. (1997) Enhanced leaf chlorophyll levels in plants treated with seaweed extract. J Appl Phycol 8: 535–543.
  • Bocanegra, M., P., Lobartini, J., C., Orioli, G., A. (2006) Plant uptake of iron chelated by humic acids of different molecular weights. Commun Soil Sci Plant Anal 37:1–2. Boddey, R., M., Urquiaga, S., Reis, V., Döbereiner, J. (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137: 111–117.
  • Çakmaçı, R. (2005). Bitki Gelişimini Teşvik Eden Rizobakterilerin Tarımda Kullanımı. Atatürk Üniv. Zir.Fak.Derg. 36 (1), 97-107, 2005 ISSN 1300-9036.
  • Calvo, P., Nelson, L., Kloepper, J. W., (2014) Agricultural uses of plant biostimulants. Plant Soil (2014) 383:3-41 DOI 10.1007/s11104-014-2131-8, 38pp.
  • Canellas, L., P., Dantas, D., J., Aguiar, N., O., (2011) Probing the hormonal activity of fractionated molecular humic omponents in tomato auxin mutants. Ann Appl Biol 159:202–211.
  • Canellas, L., P., Olivares, F., L., Okorokaova-Façanha, A., L., Façanha, A., R. (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+ -ATPase activity in maize roots. Plant Physiol 130:1951–1957.
  • Canellas, L., P., Spaccini, R., Piccolo, A. (2009) Relationships between chemical characteristics and root growth promotion of humic acids isolated from Brazilian oxisols. Soil Sci 174: 611–620.
  • Cavani, L., Halle, A., T., Richard, C., Ciavatta, C., (2006) Photosensitizing properties of protein hydrolysate-based fertilizers. J Agric Food Chem 54:9160–9167.
  • Cerdán,M.,Sánchez,A.,Oliver,M.,Juárez,M.,andSánchez-Andreu,J.J. (2009). Effect of foliar and root applications of amino acids on iron uptake by tomato plants. ActaHortic. 830, 481–488.
  • Chang, C., H., Yang, S.,S. (2009) Thermo-tolerant phosphate solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100:1648–1658.
  • Cimrin, K., M., Önder, T., Turan, M., Burcu, T. (2010) Phosphorus and humic acid application alleviate salinity stress of pepper seedling. Afr J Biotechnol 9:5845–5851.
  • Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., Cardarelli, M., (2014) Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5, 1–6.
  • Corte, L., Dell’Abate, M., T., Magini, A., (2014) Assessment of safety and efficiency of nitrogen organic fertilizers from animal-based protein hydrolysates – a laboratory multidisciplinary approach. J Sci Food Agric 94:235–245.
  • Craigie, J., S. (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393.
  • Crouch, I., J., van Staden, J. (1992) Effect of seaweed cocentrate on the establishment and yield of greenhouse tomato plants. J Appl Phycol 4:291–296da Rocha IMA, Vitorello VA.
  • Silva, J., S. (2012) Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. J Plant Physiol 169:41–49.
  • Dastager, S., G., Deepa, C., K., Pandey, A. (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48:987–992. doi:10.1016/j.plaphy. 2010.09.006.
  • de Freitas, J., R., Banerjee, M., R., Germida, J., J. (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus). Biol Fertil Soils 36:842–855.
  • Dobbss, L., B., Medici, L., O., Peres, L., E., P. (2007) Changes in root development of Arabidopsis promoted by organic matter from oxisosis. Ann Appl Biol 151:199–211.
  • Doğan, K, Çelik, I., Gok, M., Coşkan, A,, (2011) Effect of different soil tillage methods on rhizobial nodulation, biyomas and nitrogen content of second crop soybean. Afr J Microbiol Res 2011, 5:3186–3194.
  • dos Reis, S., P., Lima, A.,M., de Souza, C.,R.,B. (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647.
  • du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196 (2015) 3–14.
  • Dunstone, R., L., Richards, R., A., Rawson, H.,M. (1988) Variable responses of stomatal conductance, growth, and yield to fulvic acid applications to wheat. Aust J Agric Res 39:547–553.
  • Ertani, A., Cavani, L., Pizzeghello, D. (2009) Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J Plant Nutri Soil Sci 172:237–244.
  • Esteves da Silva, J., C., G., Machado, A., A., S., C., Oliveira, C., J., S., (1998) Effect of pH on complexation of Fe(III) with fulvic acids. Environ Toxicol Chem 17:1268–1273.
  • Eyheraguibel, B., Silvestre, J., Morard, P. (2008) Effects of humic substances derived from organic waste enhancement on the growth andmineral nutrition ofmaize. Bioresour Technol 99: 4206–4212.
  • Fan, D., Hodges, D., M., Critchley, A., T., Prithiviraj, B. (2013) A commercial extract of BrownMacroagla (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun Soil Sci Plant Anal 44:1873–1884.
  • Forde, B., G., Lea, P., J. (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358.
  • García, A., C., Berbara, R., L., L., Farías, L., P. (2012) Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. Afr J Biotechnol 11: 3125–3134.
  • García-Martínez, A., M., Díaz, A., Tejada, M. (2010) Enzymatic production of an organic soil biostimulant from wheat condensed distiller solubles: effects on soil biochemistry and biodiversity. Process Biochem 45:1127–1133.
  • Gholami, A., Shahsavani, S., Nezarat, S. (2009) The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination seedling Growth and Yield of Maize. Int J Biol Life Sci 2009, 5:1.
  • Giri, B., Mukerji, K., G. (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312. doi:10.1007/ s00572-003-0274-1.
  • Goldstein, A., H. (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria. Biol Agric Hort 12: 185–193.
  • Hadwiger, L., A., (2013) Multiple effects of chitosan on plant systems: Solid science orhype. Plant Sci. 208, 42–49.
  • Iriti, M., Picchi, V., Rossoni, M., Gomarasca, S., Ludwig, N., Gargano, M., Faoro, F., (2009) Chitosan antitranspirant activity is due to abscisic acid-dependentstomatal closure. Environ. Exp. Bot. 66, 493–500.
  • Jannin, L., Arkoun, M., Etienne, P. (2013) Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul 32: 31–52.
  • Jeannin, I., Lescure, J., C., Morot-Gaudry, J., F. (1991) The effects of aqueous seaweed sprays on the growth of maize. Bot Mar 334:469–473.
  • Kannapiran, E., Ramkuma, V., S. (2011) Isolation of phosphate solubilizing bacteria from sediments of Thondi coast, Palk Strait, Southeast Coast India. Ann Biol Res 2:157–163.
  • Karakurt, Y., Unlu, H., Unlu, H., Padem, H. (2009) The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric Scand Sect B 59:233–237.
  • Katiyar, D., Hemantaranjan, A., Singh, B., (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J. Plant Physiol. 20, 1–9.
  • Kauffman, G., L., Kneivel, D., P., Watschke, T.,L., .(2007) Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermos stability, and polyphenol production of perennial ryegrass. Crop Sci. 47,261–267.
  • Kelleher, B., P., Simpson, A., J. (2006) Humic substances in soils: are they really chemically distinct? Environ Sci Technol 40: 4605–4611.
  • Khan, A., G., (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elements Med Biol 18:355–364.
  • Khan, W., Hiltz, D., Critchley, A., T., Prithiviraj, B. (2011a) Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. J Appl Phycol 23:409–414.
  • Khan, W., Rayirath, U., P., Subramanian, S. (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399.
  • Khan, Z., H., Kahn, M., A., Aftab, T., Idrees, M., Naeem, M. (2011b) Influence of alginate oligosaccharides on growth, yield and alkaloid production of opium poppy (Papaver somniferum L.). Front Agric China 5:122–127.
  • Kim, S., K., Chojnacka, K., (2015). Marine Algae Extracts: Processes, Products, and Applications. John Wiley & Sons, 784pp.
  • Kinnersley, A., M., Turano, F., J. (2000) Gamma Aminobutyric Acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19: 479–509.
  • Kpomblekou, K., Tabatabai, M., A. (1994) Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci Soc Am J 158:442–453.
  • Kuwada, K., Ishii, T., Matsushita, I., Matsumoto, I., Kadoya, K. (1999) Effect of seaweed extracts on hyphal growth of vesicular arbuscular mycorrhizal fungi and their infectivity on trifoliate orange roots. J Japan Soc Hort Sci 68:321–326.
  • Lamabam, P., S., Gill, S., S., Tuteja, N. (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 2011, 6:175–191.
  • Lea, P., J., Sodek, L., Parry, M., A., J., Shewry, P., R., Halford, N., G. (2006) Asparagine in plants. Ann Appl Biol 150:1–26.
  • Lisiecka, J., Knaflewski, M., Spizewski, T., Fraszczak, B., Kaluzewicz, A., and Krzesinski, W. (2011). The effect of animal protein hydrolysate on quantity and quality of strawberry daughter plants cv.‘Elsanta’. Acta Sci. Pol. Hortorum Cultus 10, 31–40.
  • Liu, A., Hamel, C., Hamilton, R., I., Ma, B., L., Smith, D., L. (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336. doi:10.1007/s005720050277
  • Lulakis, M., D., Petsas, S., I., (1995) Effect of humic substances from vine-canes mature compost on tomato seedling growth. Bioresour Technol 54:179–182.
  • Ma, Y., Rajkumar, M., Freitas, H. (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–837. doi:10.1016/j.jvman.2008.01.014.
  • Maini, P. (2006) The experience of the first biostimulant, based on amino acids and peptides: a short retrospective review on the laboratory researches and the practical results. Fertilitas Agrorum 1:29–43.
  • Malboobi, M., A., Behbahani, M., Madani, H. (2009) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25:1479–1484.
  • Mali, G., V., Bodhankar, M., G. (2009) Antifungal and phytohormone production potential of Azotobacter chroococcum isolates from Groundnut (Arachis hypogea L.) rhizosphere. Asian J Exp Sci 2009, 23:293–297.
  • Malik, K., A., Mirza, M., S., Hassan, U., Mehnaz, S., Rasul, G., Haurat, J., Bauy, R., Normanel, P. (2002) The role of plant associated beneficial bacteria in rice-wheat cropping system. In: Kennedy IR, Chaudhry A (eds) Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra, pp 73–83.
  • Mancuso, S., Azzarello, E., Mugnai, S., Briand, X. (2006) Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv Hortic Sci 20:156–161.
  • Mazhar, A., A., M., Shedeed, S., I., Abdel-Aziz, N., G., Mahgoub, M., H. (2012) Growth, flowering and chemical constituents of Chrysanthemum indicum L. plant in response to different levels of humic acid and salinity. J Appl Sci Res 8:3697–3706.
  • Milton, R., F. (1964) Liquid seaweed as a fertilizer. Proc Int Seaweed Symp 4:428–431.
  • Moghaddam, A., R., L., Soleimani, A. (2012) Compensatory effects of humic acid on physiological characteristics of pistachio seedlings under salinity stress. Acta Hortic 940:252–255.
  • Mohamed, W., H. (2012) Effects of humic acid and calcium forms on dry weight and nutrient uptake of maize plant under saline condition. Aust J Basic Appl Sci 6:597–604.
  • Morard, P., Eyheraguibel, B., Morard, M., Silvestre, J. (2011) Direct effects of humic-like substance on growth, water, and mineral nutrition of various species. J of Plant Nutr 34:46–59.
  • Nardi, S., Carletti, P., Pizzeghello, D., Muscolo, A. (2009) Biological activities of humic substances. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, pp 305–339.
  • Nehra, K., Yadav, S., A., Sehrawat, A., R, Vashishat, R., K. (2007) Characterization of heat resistant mutant strains of Rhizobium sp. [Cajanus] for growth, survival and symbiotic properties. Indian J Microbiol 2007, 47:329–335.
  • Okur, N. ve Ortaş, İ. (2012) Mikrobiyolojik Gübreler ve Tarımda Mikorizalar: Bitki Besleme M. Rüştü Karaman (Ed.), 555-599, Gübretaş Rehber Kitaplar Dizisi: 2, Ankara.
  • Ortaş, İ., Ergün, B., Ortakçı, D., Ercan, S., Köse, Ö., (1999). Mikoriza Sporlarının Üretim Tekniği ve Tarımda Kullanım Olanakları. Tr. J. of Agriculture and Forestry 23 (1999) Ek Sayı 4, 959-968.
  • Paul, D. and Nair, S. (2008) Stress adaptations in a plant growth promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 2008, 48:1–7.
  • Piccolo, A and Spiteller, M. (2003) Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions. Anal Bioanal Chem 377:1047–1059.
  • Rauthan, B., S. and Schnitzer, M. (1981) Effects of a soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant Soil 63:491–495.
  • Rayorath, P., Jithesh, M., N., Farid, A., Khan, W., Palanisamy, R., Hankins, S., D., Critchley, A., T., Prithiviraj, B. (2008) Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. J Appl Phycol 20:423–429.
  • Rodríguez, H., Fraga, R., Gonzalez, T., Bashan, Y. (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287: 15–21.
  • Rodríguez, H., Gonzalez, T., Goire, I., Bashan, Y. (2004) Gluconic acid production and phosphate solubilization by the plant growthpromoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555.
  • Rodríguez, H., Gonzalez, T., Selman, G. (2001) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84:155–161.
  • Ruiz, J., M., Castilla, N., and Romero, L. (2000) Nitrogen metabolism in pepper plants applied with different bioregulators. J. Agric. Food Chem. 48, 2925–2929. doi: 10.1021/jf990394h.
  • Ryan, C., A., Pearce, G., Scheer, J., and Moura, D., S. (2002). Polypeptide hormones. Plant Cell 14, S251–S264.doi10.1105/tpc.010484.
  • Sahin, F., Cakmakci, R., Kantar, F. (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129.
  • Sahoo, R., K., Ansari, M., W., Dangar, T., K., Mohanty, S., Tuteja, N. (2013) Phenotypic and molecular characterization of efficient nitrogen fixing Azotobacter strains of the rice fields. Protoplasma 2013, doi:10.1007/s00709-013-0547-2.
  • Schiavon, M., Ertani, A., Nardi, S. (2008) Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. J Agric Food Chem 56:11800–11808.
  • Shahid, M., Dumat, C., Silvestre, J., Pinelli, E. (2012) Effect of fulvic acids on lead-induced oxidative stress tometal sensitiveVicia faba L. plant. Biol Fertil Soils 48:689–697.
  • Shang, H., Shifeng, C., Yang, Z., Cai, Y., Zheng, Y. (2011) Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling Injury in peach fruit after long-term cold storage. J Agric Food Chem 59:1264–1268.
  • Sharma, P., Sardana, V., Kandola, S., S. (2011) Response of groundnut (Arachishypogaea L.) to Rhizobium Inoculation. Libyan Agric Res Centre J Int 2011, 2:101–104.
  • Sharma, S., S., Dietz, K., J. (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726.
  • Sheng, X., F., He, L., Y. (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72.
  • Sinha, R., K., Valani, D., Chauhan, K., Agarwal, S. (2014) Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. Int J Agric Health Saf 2014, 1:50–64.
  • Smith, S., E., Jakobsen, I., Grønlund, M., Smith, F., A. (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057.
  • Soldal, T., Nissen, P. (1978) Multiphasic uptake of amino acids by barley roots. Physiol Plant 43:181–188.
  • Stiegler, J., C., Richardson, M., D., Karcher, D., E., Roberts, T., L., Norman, R., J. (2013) Foliar absorption of various inorganic and organic nitrogen sources by creeping bentgrass. Crop Sci 52:1148–1152.
  • Suzuki, N., Koussevitzky, S., Mittler, R., Miller, G. (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270.
  • Tahir, M., M., Khurshid, M., Khan, M., Z., Abbasi, M., K., Hazmi, M., H. (2011) Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere 2:124–131.
  • Taiz, L. ve Zeiger, E. (2008). Bitki Fizyolojisi. Palme Yayın, 690s.
  • Tao, G., C., Tian, S., J., Cai, M., Y., Xie, G., H. (2008) Phosphate solubilizing and –mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523.
  • Vera, J., Castro, J., Contreras, R., González, A., Moenne, A. (2012). Oligo-carrageenans induce a long-term and broad-range protection against pathogens in tobacco plants (var. Xanthi). Physiol Mol Plant Pathol 79:31–39.
  • Vessey, J., K. (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi:10.1023/ a:1026037216893.
  • Vranova, V., Rejsek, K., Skene, K., R., Formanck, P. (2011) Non-protein amino acids: plant, soil and acosysteminteractions. Plant Soil 342:31–48.
  • Walch-Liu, P., Ivanov, I., I., Filleur, S. (2006a) Nitrogen regulation of root branching. Ann Bot 97:875–881.
  • Walch-Liu, P., Liu, L., H., Remans, T., Tester, M., Forde, B., G. (2006b) Evidence that L-Glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47:1045–1057.
  • Wally, O., S., .D., Critchley, A., T., Hiltz, D., Craigie, J., S., Han, X., Zaharia, L., I., Abrams, S., R., Prithiviraj, B., (2013a) Regulation of phytohormone biosynthesis andaccumulation in Arabidopsis Following treatment with commercial extractfrom the marine macroalga ascophyllum nodosum. J. Plant Growth Regul. 32,324–339.
  • Wally, O., S., D., Critchley, A., T., Hiltz, D., Craigie, J., S., Han, X., Zaharia, L., I., Abrams, S., R., ,Prithiviraj, B., (2013b) Erratum to: regulation of phytohormone biosynthesisand accumulation in arabidopsis following treatment with commercial extractfrom the marine macroalga ascophyllum nodosum. J. Plant Growth Regul. 32,340–341.
  • Watson, R., Fowden, L. (1975) The uptake of phenylalanine and tyrosine by seedling root tips. Phytochemistry 14:1181–1186.
  • Xudan, X. (1986) The effect of foliar application of fulvic acid on water use, nutrient uptake and yield in wheat. Aust J Agric Res 37:343–350.
  • Yazdani, M., Pirdashti, H. (2011) Efficiency of co–inoculation phosphate solubilizer microorganisms (psm) and plant growth promoting rhizobacteria (PGPR) on micronutrients uptake in corn (Zea mays L.). Int Res J Appl Basic Sci 2:28–34.

Biyostimulantların Sınıflandırılması ve Türkiye’deki Durumu

Yıl 2016, Cilt: 31 Sayı: 3, 185 - 200, 30.12.2016

Öz

Biyostimülantlar, bitki gelişimini, bitkilerin beslenmesini, ürün kalitesini ve verimini olumlu yönde etkilemek; bitkilerin strese dayanıklılığını arttırmak amacıyla; bitkilere yapraktan, topraktan veya tohuma uygulanan, içeriğinde organik veya inorganik bileşikler, mikroorganizmalar bulundurabilen, ayrıca bazılarının toprak yapısını düzenleyici etkileri de bulunan materyallerdir. Sözü edilen materyaller Türkiye’de 2002 yılından itibaren izinli olarak tüketilmekte olup, dünya çapında pazarının 2016-2021 yılları arasında, yıllık % 10.4 artış ile 2.91 milyar Amerikan Doları olması beklenmektedir. Anılan ürünlerin endüstrileri özellikle Amerika ve Avrupa kıtalarında bulunmaktadır. Biyostimülantlar; genel olarak değerlendirildiğinde zararlılar üzerine doğrudan etkili olmadıkları için pestisit sınıfına dâhil edilmemektedirler. Ülkemizde ise, 17/2/1999 tarihli ve 23614 sayılı Resmi Gazete’de yayımlanan Zirai Mücadelede Kullanılan Pestisit ve Benzeri Maddelerin Ruhsatlandırılması Hakkında Yönetmeliğin 4 üncü maddesinde yer alan “Pestisit Benzeri Maddeler” tanımına “tuzaklar” ifadesinden sonra gelmek üzere “bitki aktivatörleri” ifadesi eklenmiştir. Ancak bununla birlikte sözü edilen ürünler; içeriklerinde bitki besin elementi bulunmasına bakılmaksızın gübre sınıfına da dâhil edilmemektedirler. Biyostimülantların sınıflandırmaları tamamen kesinleşmemekle birlikte, bazı araştırıcılar tarafından önemli kategorileri belirlemiştir. Bu kategoriler; humik ve fulvik asitler, amino asitler ve diğer azotlu bileşikler, deniz yosunu ve bitki ekstraktları, kitin ve kitosan benzeri polimerler, inorganik bileşikler, yararlı mantarlar ve yararlı bakteriler şeklindedir. Bu çalışmada biyostimülantlar, belirtilen kategoriler altında incelenmiş olup, biyostimülant uygulamalarının bitki fizyolojisine, bitkilerin besin elementi alımlarına ve stres toleransına etkileri derlenmiştir

Kaynakça

  • Abd El-Fattah, D. A., Ewedab, W. E., Zayed, M. S., Hassaneina, M. K. Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculants. Ann Agric Sci 2013, 58:111–118.
  • Adani, F., Genevini, P., Zaccheo, P., Zocchi, G. (1998) The effect of commercial humic acid on tomato plant growth and mineral nutrition. J Plant Nutr 21:561–575.
  • Ahmad, R., Lim, C., J., Kwon, S., Y. (2013) Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol Rep 7:49–57. doi:10.1007/s11816-012-0266-8.
  • Alam, M., Z., Braun, G., Norrie, J., Hodges, D., M. (2013) Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can J Plant Sci 93:23–36.
  • Albuzio, A., Nardi, S., Gulli, A. (1989) Plant growth regulator activity of small molecular size humic fractions. Sci Total Environ 81(82):671–674.
  • Anjum, S., A., Farooq, M., Wang, L., C. (2011a) Gas exchange and chlorophyll synthesis of maize cultivars are enhanced by exogenously-applied glycinebetaine under drought conditions. Plant Soil Environ 57:326–331.
  • Anjum, S., A., Wang, L., Farooq, M., Xue, L., Ali, S. (2011b) Fulvic acid application improves the maize performance under wellwatered and drought conditions. J Agron Crop Sci 197: 409–417.
  • Anonymous, (2016) http://www.marketsandmarkets.com/PressReleases/biostimulant.asp
  • Anonymous, EBIC (2013). Economic overview of the biostimulants sector in Europe. www.biostimulants.eu/2013/04/2013-overview-of-the-european-biostimulants-market/
  • Ashraf, M., Foolad, M., R. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216.
  • Asp, H., Berggren, D., (1990) Phosphate and calcium uptake in beech (Fagus sylvatica) in the presence of aluminium and natural fulvic acids. Physiol Plant 80:307–314.
  • Aydin, A., Kant, C., Turan, M. (2012) Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr J Agric Res 7:1073–1086.
  • Aziz, G., Bajsa, N., Haghjou, T., Taule, C., Valverde, A., Mariano, J., Arias, A. (2012) Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay. Appl Soil Ecol 2012, 61:320–326.
  • Baharlouei, K., Pazira, E., Solhi, M. (2011) Evaluation of Inoculation of plant Growth-Promoting Rhizobacteria on Cadmium. Singapore: International Conference on Environmental Science and Technology IPCBEE vol.6 IACSIT Press.
  • Banerjee, M., R., Yesmin, L., Vessey, J., K. (2006) Plant growth promoting rhizobacteria as biofertilizers and biopesticide. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 137–181.
  • Beaudreau, Jr., D., G. (2013) Biostimulants in Agriculture: Their Current and Future Role in a Connected Agricultural Economy. Biostimulant Coalition, 2pp.
  • Befrozfar, M., R., Habibi, D., Asgharzadeh, A., Sadeghi-Shoae, M., Tookallo, M., R. (2013) Vermicompost, plant growth promoting bacteria and humic acid can affect the growth and essence of basil (Ocimumbasilicum L.). Ann Biol Res 4:8–12.
  • Bhardwaj, D., Ansari, M. W., Sahoo, R. K., Tuteja, N., (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories 2014, 13:66 http://www.microbialcellfactories.com/content/13/1/66. 10pp.
  • Bi, F., Iqbal, S., Arman, M., Ali, A., Mu H. (2011) Carrageenan as an elicitor of induced secondary metabolites and its effects on various growth characters of chickpea and maize plants. J Saudi Chem Soc 15:269–273.
  • Blunden, G., Jenkins, T., Liu, Y., W. (1997) Enhanced leaf chlorophyll levels in plants treated with seaweed extract. J Appl Phycol 8: 535–543.
  • Bocanegra, M., P., Lobartini, J., C., Orioli, G., A. (2006) Plant uptake of iron chelated by humic acids of different molecular weights. Commun Soil Sci Plant Anal 37:1–2. Boddey, R., M., Urquiaga, S., Reis, V., Döbereiner, J. (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137: 111–117.
  • Çakmaçı, R. (2005). Bitki Gelişimini Teşvik Eden Rizobakterilerin Tarımda Kullanımı. Atatürk Üniv. Zir.Fak.Derg. 36 (1), 97-107, 2005 ISSN 1300-9036.
  • Calvo, P., Nelson, L., Kloepper, J. W., (2014) Agricultural uses of plant biostimulants. Plant Soil (2014) 383:3-41 DOI 10.1007/s11104-014-2131-8, 38pp.
  • Canellas, L., P., Dantas, D., J., Aguiar, N., O., (2011) Probing the hormonal activity of fractionated molecular humic omponents in tomato auxin mutants. Ann Appl Biol 159:202–211.
  • Canellas, L., P., Olivares, F., L., Okorokaova-Façanha, A., L., Façanha, A., R. (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+ -ATPase activity in maize roots. Plant Physiol 130:1951–1957.
  • Canellas, L., P., Spaccini, R., Piccolo, A. (2009) Relationships between chemical characteristics and root growth promotion of humic acids isolated from Brazilian oxisols. Soil Sci 174: 611–620.
  • Cavani, L., Halle, A., T., Richard, C., Ciavatta, C., (2006) Photosensitizing properties of protein hydrolysate-based fertilizers. J Agric Food Chem 54:9160–9167.
  • Cerdán,M.,Sánchez,A.,Oliver,M.,Juárez,M.,andSánchez-Andreu,J.J. (2009). Effect of foliar and root applications of amino acids on iron uptake by tomato plants. ActaHortic. 830, 481–488.
  • Chang, C., H., Yang, S.,S. (2009) Thermo-tolerant phosphate solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100:1648–1658.
  • Cimrin, K., M., Önder, T., Turan, M., Burcu, T. (2010) Phosphorus and humic acid application alleviate salinity stress of pepper seedling. Afr J Biotechnol 9:5845–5851.
  • Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., Cardarelli, M., (2014) Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5, 1–6.
  • Corte, L., Dell’Abate, M., T., Magini, A., (2014) Assessment of safety and efficiency of nitrogen organic fertilizers from animal-based protein hydrolysates – a laboratory multidisciplinary approach. J Sci Food Agric 94:235–245.
  • Craigie, J., S. (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393.
  • Crouch, I., J., van Staden, J. (1992) Effect of seaweed cocentrate on the establishment and yield of greenhouse tomato plants. J Appl Phycol 4:291–296da Rocha IMA, Vitorello VA.
  • Silva, J., S. (2012) Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. J Plant Physiol 169:41–49.
  • Dastager, S., G., Deepa, C., K., Pandey, A. (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48:987–992. doi:10.1016/j.plaphy. 2010.09.006.
  • de Freitas, J., R., Banerjee, M., R., Germida, J., J. (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus). Biol Fertil Soils 36:842–855.
  • Dobbss, L., B., Medici, L., O., Peres, L., E., P. (2007) Changes in root development of Arabidopsis promoted by organic matter from oxisosis. Ann Appl Biol 151:199–211.
  • Doğan, K, Çelik, I., Gok, M., Coşkan, A,, (2011) Effect of different soil tillage methods on rhizobial nodulation, biyomas and nitrogen content of second crop soybean. Afr J Microbiol Res 2011, 5:3186–3194.
  • dos Reis, S., P., Lima, A.,M., de Souza, C.,R.,B. (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647.
  • du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196 (2015) 3–14.
  • Dunstone, R., L., Richards, R., A., Rawson, H.,M. (1988) Variable responses of stomatal conductance, growth, and yield to fulvic acid applications to wheat. Aust J Agric Res 39:547–553.
  • Ertani, A., Cavani, L., Pizzeghello, D. (2009) Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J Plant Nutri Soil Sci 172:237–244.
  • Esteves da Silva, J., C., G., Machado, A., A., S., C., Oliveira, C., J., S., (1998) Effect of pH on complexation of Fe(III) with fulvic acids. Environ Toxicol Chem 17:1268–1273.
  • Eyheraguibel, B., Silvestre, J., Morard, P. (2008) Effects of humic substances derived from organic waste enhancement on the growth andmineral nutrition ofmaize. Bioresour Technol 99: 4206–4212.
  • Fan, D., Hodges, D., M., Critchley, A., T., Prithiviraj, B. (2013) A commercial extract of BrownMacroagla (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun Soil Sci Plant Anal 44:1873–1884.
  • Forde, B., G., Lea, P., J. (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358.
  • García, A., C., Berbara, R., L., L., Farías, L., P. (2012) Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. Afr J Biotechnol 11: 3125–3134.
  • García-Martínez, A., M., Díaz, A., Tejada, M. (2010) Enzymatic production of an organic soil biostimulant from wheat condensed distiller solubles: effects on soil biochemistry and biodiversity. Process Biochem 45:1127–1133.
  • Gholami, A., Shahsavani, S., Nezarat, S. (2009) The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination seedling Growth and Yield of Maize. Int J Biol Life Sci 2009, 5:1.
  • Giri, B., Mukerji, K., G. (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312. doi:10.1007/ s00572-003-0274-1.
  • Goldstein, A., H. (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria. Biol Agric Hort 12: 185–193.
  • Hadwiger, L., A., (2013) Multiple effects of chitosan on plant systems: Solid science orhype. Plant Sci. 208, 42–49.
  • Iriti, M., Picchi, V., Rossoni, M., Gomarasca, S., Ludwig, N., Gargano, M., Faoro, F., (2009) Chitosan antitranspirant activity is due to abscisic acid-dependentstomatal closure. Environ. Exp. Bot. 66, 493–500.
  • Jannin, L., Arkoun, M., Etienne, P. (2013) Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul 32: 31–52.
  • Jeannin, I., Lescure, J., C., Morot-Gaudry, J., F. (1991) The effects of aqueous seaweed sprays on the growth of maize. Bot Mar 334:469–473.
  • Kannapiran, E., Ramkuma, V., S. (2011) Isolation of phosphate solubilizing bacteria from sediments of Thondi coast, Palk Strait, Southeast Coast India. Ann Biol Res 2:157–163.
  • Karakurt, Y., Unlu, H., Unlu, H., Padem, H. (2009) The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric Scand Sect B 59:233–237.
  • Katiyar, D., Hemantaranjan, A., Singh, B., (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J. Plant Physiol. 20, 1–9.
  • Kauffman, G., L., Kneivel, D., P., Watschke, T.,L., .(2007) Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermos stability, and polyphenol production of perennial ryegrass. Crop Sci. 47,261–267.
  • Kelleher, B., P., Simpson, A., J. (2006) Humic substances in soils: are they really chemically distinct? Environ Sci Technol 40: 4605–4611.
  • Khan, A., G., (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elements Med Biol 18:355–364.
  • Khan, W., Hiltz, D., Critchley, A., T., Prithiviraj, B. (2011a) Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. J Appl Phycol 23:409–414.
  • Khan, W., Rayirath, U., P., Subramanian, S. (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399.
  • Khan, Z., H., Kahn, M., A., Aftab, T., Idrees, M., Naeem, M. (2011b) Influence of alginate oligosaccharides on growth, yield and alkaloid production of opium poppy (Papaver somniferum L.). Front Agric China 5:122–127.
  • Kim, S., K., Chojnacka, K., (2015). Marine Algae Extracts: Processes, Products, and Applications. John Wiley & Sons, 784pp.
  • Kinnersley, A., M., Turano, F., J. (2000) Gamma Aminobutyric Acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19: 479–509.
  • Kpomblekou, K., Tabatabai, M., A. (1994) Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci Soc Am J 158:442–453.
  • Kuwada, K., Ishii, T., Matsushita, I., Matsumoto, I., Kadoya, K. (1999) Effect of seaweed extracts on hyphal growth of vesicular arbuscular mycorrhizal fungi and their infectivity on trifoliate orange roots. J Japan Soc Hort Sci 68:321–326.
  • Lamabam, P., S., Gill, S., S., Tuteja, N. (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 2011, 6:175–191.
  • Lea, P., J., Sodek, L., Parry, M., A., J., Shewry, P., R., Halford, N., G. (2006) Asparagine in plants. Ann Appl Biol 150:1–26.
  • Lisiecka, J., Knaflewski, M., Spizewski, T., Fraszczak, B., Kaluzewicz, A., and Krzesinski, W. (2011). The effect of animal protein hydrolysate on quantity and quality of strawberry daughter plants cv.‘Elsanta’. Acta Sci. Pol. Hortorum Cultus 10, 31–40.
  • Liu, A., Hamel, C., Hamilton, R., I., Ma, B., L., Smith, D., L. (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336. doi:10.1007/s005720050277
  • Lulakis, M., D., Petsas, S., I., (1995) Effect of humic substances from vine-canes mature compost on tomato seedling growth. Bioresour Technol 54:179–182.
  • Ma, Y., Rajkumar, M., Freitas, H. (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–837. doi:10.1016/j.jvman.2008.01.014.
  • Maini, P. (2006) The experience of the first biostimulant, based on amino acids and peptides: a short retrospective review on the laboratory researches and the practical results. Fertilitas Agrorum 1:29–43.
  • Malboobi, M., A., Behbahani, M., Madani, H. (2009) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25:1479–1484.
  • Mali, G., V., Bodhankar, M., G. (2009) Antifungal and phytohormone production potential of Azotobacter chroococcum isolates from Groundnut (Arachis hypogea L.) rhizosphere. Asian J Exp Sci 2009, 23:293–297.
  • Malik, K., A., Mirza, M., S., Hassan, U., Mehnaz, S., Rasul, G., Haurat, J., Bauy, R., Normanel, P. (2002) The role of plant associated beneficial bacteria in rice-wheat cropping system. In: Kennedy IR, Chaudhry A (eds) Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra, pp 73–83.
  • Mancuso, S., Azzarello, E., Mugnai, S., Briand, X. (2006) Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv Hortic Sci 20:156–161.
  • Mazhar, A., A., M., Shedeed, S., I., Abdel-Aziz, N., G., Mahgoub, M., H. (2012) Growth, flowering and chemical constituents of Chrysanthemum indicum L. plant in response to different levels of humic acid and salinity. J Appl Sci Res 8:3697–3706.
  • Milton, R., F. (1964) Liquid seaweed as a fertilizer. Proc Int Seaweed Symp 4:428–431.
  • Moghaddam, A., R., L., Soleimani, A. (2012) Compensatory effects of humic acid on physiological characteristics of pistachio seedlings under salinity stress. Acta Hortic 940:252–255.
  • Mohamed, W., H. (2012) Effects of humic acid and calcium forms on dry weight and nutrient uptake of maize plant under saline condition. Aust J Basic Appl Sci 6:597–604.
  • Morard, P., Eyheraguibel, B., Morard, M., Silvestre, J. (2011) Direct effects of humic-like substance on growth, water, and mineral nutrition of various species. J of Plant Nutr 34:46–59.
  • Nardi, S., Carletti, P., Pizzeghello, D., Muscolo, A. (2009) Biological activities of humic substances. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, pp 305–339.
  • Nehra, K., Yadav, S., A., Sehrawat, A., R, Vashishat, R., K. (2007) Characterization of heat resistant mutant strains of Rhizobium sp. [Cajanus] for growth, survival and symbiotic properties. Indian J Microbiol 2007, 47:329–335.
  • Okur, N. ve Ortaş, İ. (2012) Mikrobiyolojik Gübreler ve Tarımda Mikorizalar: Bitki Besleme M. Rüştü Karaman (Ed.), 555-599, Gübretaş Rehber Kitaplar Dizisi: 2, Ankara.
  • Ortaş, İ., Ergün, B., Ortakçı, D., Ercan, S., Köse, Ö., (1999). Mikoriza Sporlarının Üretim Tekniği ve Tarımda Kullanım Olanakları. Tr. J. of Agriculture and Forestry 23 (1999) Ek Sayı 4, 959-968.
  • Paul, D. and Nair, S. (2008) Stress adaptations in a plant growth promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 2008, 48:1–7.
  • Piccolo, A and Spiteller, M. (2003) Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions. Anal Bioanal Chem 377:1047–1059.
  • Rauthan, B., S. and Schnitzer, M. (1981) Effects of a soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant Soil 63:491–495.
  • Rayorath, P., Jithesh, M., N., Farid, A., Khan, W., Palanisamy, R., Hankins, S., D., Critchley, A., T., Prithiviraj, B. (2008) Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. J Appl Phycol 20:423–429.
  • Rodríguez, H., Fraga, R., Gonzalez, T., Bashan, Y. (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287: 15–21.
  • Rodríguez, H., Gonzalez, T., Goire, I., Bashan, Y. (2004) Gluconic acid production and phosphate solubilization by the plant growthpromoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555.
  • Rodríguez, H., Gonzalez, T., Selman, G. (2001) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84:155–161.
  • Ruiz, J., M., Castilla, N., and Romero, L. (2000) Nitrogen metabolism in pepper plants applied with different bioregulators. J. Agric. Food Chem. 48, 2925–2929. doi: 10.1021/jf990394h.
  • Ryan, C., A., Pearce, G., Scheer, J., and Moura, D., S. (2002). Polypeptide hormones. Plant Cell 14, S251–S264.doi10.1105/tpc.010484.
  • Sahin, F., Cakmakci, R., Kantar, F. (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129.
  • Sahoo, R., K., Ansari, M., W., Dangar, T., K., Mohanty, S., Tuteja, N. (2013) Phenotypic and molecular characterization of efficient nitrogen fixing Azotobacter strains of the rice fields. Protoplasma 2013, doi:10.1007/s00709-013-0547-2.
  • Schiavon, M., Ertani, A., Nardi, S. (2008) Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. J Agric Food Chem 56:11800–11808.
  • Shahid, M., Dumat, C., Silvestre, J., Pinelli, E. (2012) Effect of fulvic acids on lead-induced oxidative stress tometal sensitiveVicia faba L. plant. Biol Fertil Soils 48:689–697.
  • Shang, H., Shifeng, C., Yang, Z., Cai, Y., Zheng, Y. (2011) Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling Injury in peach fruit after long-term cold storage. J Agric Food Chem 59:1264–1268.
  • Sharma, P., Sardana, V., Kandola, S., S. (2011) Response of groundnut (Arachishypogaea L.) to Rhizobium Inoculation. Libyan Agric Res Centre J Int 2011, 2:101–104.
  • Sharma, S., S., Dietz, K., J. (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726.
  • Sheng, X., F., He, L., Y. (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72.
  • Sinha, R., K., Valani, D., Chauhan, K., Agarwal, S. (2014) Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. Int J Agric Health Saf 2014, 1:50–64.
  • Smith, S., E., Jakobsen, I., Grønlund, M., Smith, F., A. (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057.
  • Soldal, T., Nissen, P. (1978) Multiphasic uptake of amino acids by barley roots. Physiol Plant 43:181–188.
  • Stiegler, J., C., Richardson, M., D., Karcher, D., E., Roberts, T., L., Norman, R., J. (2013) Foliar absorption of various inorganic and organic nitrogen sources by creeping bentgrass. Crop Sci 52:1148–1152.
  • Suzuki, N., Koussevitzky, S., Mittler, R., Miller, G. (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270.
  • Tahir, M., M., Khurshid, M., Khan, M., Z., Abbasi, M., K., Hazmi, M., H. (2011) Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere 2:124–131.
  • Taiz, L. ve Zeiger, E. (2008). Bitki Fizyolojisi. Palme Yayın, 690s.
  • Tao, G., C., Tian, S., J., Cai, M., Y., Xie, G., H. (2008) Phosphate solubilizing and –mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523.
  • Vera, J., Castro, J., Contreras, R., González, A., Moenne, A. (2012). Oligo-carrageenans induce a long-term and broad-range protection against pathogens in tobacco plants (var. Xanthi). Physiol Mol Plant Pathol 79:31–39.
  • Vessey, J., K. (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi:10.1023/ a:1026037216893.
  • Vranova, V., Rejsek, K., Skene, K., R., Formanck, P. (2011) Non-protein amino acids: plant, soil and acosysteminteractions. Plant Soil 342:31–48.
  • Walch-Liu, P., Ivanov, I., I., Filleur, S. (2006a) Nitrogen regulation of root branching. Ann Bot 97:875–881.
  • Walch-Liu, P., Liu, L., H., Remans, T., Tester, M., Forde, B., G. (2006b) Evidence that L-Glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47:1045–1057.
  • Wally, O., S., .D., Critchley, A., T., Hiltz, D., Craigie, J., S., Han, X., Zaharia, L., I., Abrams, S., R., Prithiviraj, B., (2013a) Regulation of phytohormone biosynthesis andaccumulation in Arabidopsis Following treatment with commercial extractfrom the marine macroalga ascophyllum nodosum. J. Plant Growth Regul. 32,324–339.
  • Wally, O., S., D., Critchley, A., T., Hiltz, D., Craigie, J., S., Han, X., Zaharia, L., I., Abrams, S., R., ,Prithiviraj, B., (2013b) Erratum to: regulation of phytohormone biosynthesisand accumulation in arabidopsis following treatment with commercial extractfrom the marine macroalga ascophyllum nodosum. J. Plant Growth Regul. 32,340–341.
  • Watson, R., Fowden, L. (1975) The uptake of phenylalanine and tyrosine by seedling root tips. Phytochemistry 14:1181–1186.
  • Xudan, X. (1986) The effect of foliar application of fulvic acid on water use, nutrient uptake and yield in wheat. Aust J Agric Res 37:343–350.
  • Yazdani, M., Pirdashti, H. (2011) Efficiency of co–inoculation phosphate solubilizer microorganisms (psm) and plant growth promoting rhizobacteria (PGPR) on micronutrients uptake in corn (Zea mays L.). Int Res J Appl Basic Sci 2:28–34.
Toplam 124 adet kaynakça vardır.

Ayrıntılar

Konular Ziraat Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Barkın Külahtaş

Burçin Çokuysal

Yayımlanma Tarihi 30 Aralık 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 31 Sayı: 3

Kaynak Göster

APA Külahtaş, B., & Çokuysal, B. (2016). Biyostimulantların Sınıflandırılması ve Türkiye’deki Durumu. Çukurova Tarım Ve Gıda Bilimleri Dergisi, 31(3), 185-200.
AMA Külahtaş B, Çokuysal B. Biyostimulantların Sınıflandırılması ve Türkiye’deki Durumu. Çukurova Tarım Gıda Bil. Der. Aralık 2016;31(3):185-200.
Chicago Külahtaş, Barkın, ve Burçin Çokuysal. “Biyostimulantların Sınıflandırılması Ve Türkiye’deki Durumu”. Çukurova Tarım Ve Gıda Bilimleri Dergisi 31, sy. 3 (Aralık 2016): 185-200.
EndNote Külahtaş B, Çokuysal B (01 Aralık 2016) Biyostimulantların Sınıflandırılması ve Türkiye’deki Durumu. Çukurova Tarım ve Gıda Bilimleri Dergisi 31 3 185–200.
IEEE B. Külahtaş ve B. Çokuysal, “Biyostimulantların Sınıflandırılması ve Türkiye’deki Durumu”, Çukurova Tarım Gıda Bil. Der., c. 31, sy. 3, ss. 185–200, 2016.
ISNAD Külahtaş, Barkın - Çokuysal, Burçin. “Biyostimulantların Sınıflandırılması Ve Türkiye’deki Durumu”. Çukurova Tarım ve Gıda Bilimleri Dergisi 31/3 (Aralık 2016), 185-200.
JAMA Külahtaş B, Çokuysal B. Biyostimulantların Sınıflandırılması ve Türkiye’deki Durumu. Çukurova Tarım Gıda Bil. Der. 2016;31:185–200.
MLA Külahtaş, Barkın ve Burçin Çokuysal. “Biyostimulantların Sınıflandırılması Ve Türkiye’deki Durumu”. Çukurova Tarım Ve Gıda Bilimleri Dergisi, c. 31, sy. 3, 2016, ss. 185-00.
Vancouver Külahtaş B, Çokuysal B. Biyostimulantların Sınıflandırılması ve Türkiye’deki Durumu. Çukurova Tarım Gıda Bil. Der. 2016;31(3):185-200.

Çukurova Üniversitesi Ziraat Fakültesi Dergisi” yayın hayatına 1 Ocak 2016 tarihi itibariyle “Çukurova Tarım ve Gıda Bilimleri Dergisi” adıyla devam etmektedir.


logo_224x57_white.gif       ResearchBib User Pictureroot indexing ile ilgili görsel sonucu