Araştırma Makalesi
BibTex RIS Kaynak Göster

Bitkisel Kaynaklı Gıdalardan İzole Edilen B. cereus Suşlarının Bazı Antibiyotiklere Karşı Duyarlılık Profillerinin Belirlenmesi

Yıl 2023, , 75 - 79, 31.12.2023
https://doi.org/10.47027/duvetfd.1298336

Öz

Bacillus cereus, gram pozitif, fakültatif anaerob, sporlu bir bakteridir. Doğada yaygındır ve baharat, et, süt, tahıl, bakliyat gibi gıdalar ile hayvanlarda mastitis olgularından ve yara enfeksiyonlarından izole edilmektedir. Aktarılabilir antibiyotik direnç genlerinin gıda zincirinde saptanmasıyla ilgili çalışmalar Dünya Sağlık Örgütü’nün bakterilerde antibiyotik direnç gelişimi ve yayılımını 21. yüzyılın önemli sağlık sorunlarından biri olarak bildirilmesiyle önem kazanmıştır. Mevcut çalışma bitkisel kaynaklı çeşitli gıdalardan izole edilen B. cereus suşlarının farklı grup antibiyotiklere karşı fenotipik duyarlılık profillerinin belirlenmesi amacıyla gerçekleştirilmiştir. Toplam 152 bitkisel kaynaklı gıdada B. cereus %19.7 oranında ve 1.4x10² kob/g ile 1.0x10⁴ kob/g arasında saptanmıştır. İzole edilen 30 B. cereus suşunun 8 farklı grup antibiyotiğe karşı fenotipik duyarlılık profilleri disk difüzyon yöntemiyle test edilmiştir. Sonuçlar Avrupa Antimikrobiyal Duyarlılık Testi Komitesi (EUCAST) kriterlerine göre duyarlı, orta duyarlı veya dirençli olarak yorumlanmıştır. B. cereus suşlarının tamamı sefiksim ve amoksisilin/klavulonik asite dirençli iken, %3.4’ü sulphametoksazol/trimetoprime karşı duyarlı, %6.6’sı orta derecede duyarlı, %90’nının ise dirençli olduğu saptanmıştır. En yüksek antibiyotik duyarlılık (%100) kloramfenikol ve (%93.3) gentamisine karşı iken, tetrasiklin ve eritromisine eşit oranda (%56.7) duyarlılık belirlenmiştir. Suşların %83.3’ünün siprofloksasine orta derecede duyarlı, %16.7’sinin ise dirençli olduğu saptanmıştır. Sonuç olarak; antibiyotik duyarlılık profillerinin gıda kaynaklı patojenlerde belirlenmesinin antimikrobiyal direnç geni yayılımlarının gıda kaynaklı patojenler aracılığıyla da mümkün olması, uygun tedavi planlarının oluşturulması ve antibiyotik direnç dağılımlarının izlenebilmesi açısından önemli olduğu düşünülmektedir.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • 1- Mills E, Sullivan E, Kovac J. (2022). Comparative Analysis of Bacillus cereus Group Isolates' Resistance Using Disk Diffusion and Broth Microdilution and the Correlation between Antimicrobial Resistance Phenotypes and Genotypes. Appl Environ Microbiol. 88(6): e0230221.
  • 2. Zhao S, Chen J, Fei P. et al. (2020) Prevalence, Molecular Characterization, and Antibiotic Susceptibility of Bacillus cereus Isolated from Dairy Products in China. J Dairy Sci. 103(5): 3994-4001.
  • 3. Park YB, Kim JB, Shin SW. et al. (2009). Prevalence, Genetic Diversity, and Antibiotic Susceptibility of Bacillus cereus Strains Isolated from Rice and Cereals Collected in Korea. J Food Prot. 72(3): 612-617.
  • 4. Özlük Çilak G, Halkman K. (2018). Çeşitli Besiyerlerinin Bacillus cereus Sporlanmasındaki Etkisi Üzerine Bir Araştırma. Gıda. 43(2): 347-355.
  • 5. Ehling-Schulz M, Lereclus D, Koehler TM. (2019) The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr. 7(3): 10.1128/microbiolspec.GPP3-0032-2018.
  • 6. Chon JW, Kim JH, Lee SJ, Hyeon JY, Seo KH. (2012). Toxin Profile, Antibiotic Resistance, and Phenotypic and Molecular Characterization of Bacillus cereus in Sunsik. Food Microbiol. 32(1): 217-222.
  • 7. Yu S, Yu P, Wang J. et al. (2020). A Study on Prevalence and Characterization of Bacillus cereus in Ready to-Eat Foods in China. Front Microbiol. 10: 3043.
  • 8. Agata N, Ohta M, Mori M, Isobe M. (1995). A Novel Dodecadepsipeptide, Cereulide, is an Emetic Toxin of Bacillus cereus. FEMS Microbiol Lett. 129(1): 17-20.
  • 9. Arnesen SLP, Fagerlund A, Granum PE. (2008). From Soil to Gut: Bacillus cereus and Its Food Poisoning Toxins. FEMS Microbiol Rev. 32(4): 579-606.
  • 10. Ehling-Schulz M, Messelhäusser U. (2012). One Pathogen but Two Different Types of Foodborne Outbreaks: Bacillus cereus in Catering Facilities in Germany. In Case Studies in Food Safety and Quality Management: Lessons from Real-Life Situations; Horfaar, J., Ed.; Woodhead: Cambridge, UK, pp. 63-70.
  • 11. Messelhäusser U, Frenzel E, Blöchinger C, Zucker R, Kämpf P, Ehling-Schulz M. (2014). Emetic Bacillus cereus are more Volatile than Thought: Recent Foodborne Outbreaks and Prevalence Studies in Bavaria (2007-2013). Biomed Res Int. 465603.
  • 12. Shinagawa K, Ueno Y, Hu D, Ueda S, Sugii S. (1996). Mouse Lethal Activity of a HEp-2 Vacuolation Factor, Cereulide, Produced by Bacillus cereus Isolated from Vomiting-Type Food Poisoning. JVMS. 58(10): 1027–1029.
  • 13. Clavel T, Carlin F, Lairon D, Nguyen-The C, Schmitt P. (2004). Survival of Bacillus cereus Spores and Vegetative Cells in Acid Media Simulating Human Stomach. J Appl Microbiol. 97(1): 214–219.
  • 14. Jessberger N, Dietrich R, Granum PE, Märtlbauer E. (2020). The Bacillus cereus Food Infection as Multifactorial Process. Toxins. 12(11): 701.
  • 15. Logan N. (2011). Bacillus and Relatives in Foodborne Illness. J Appl Microbiol. 112: 417–429.
  • 16. Avashia SB, Riggins WS, Lindley C. et al. (2007). Fatal Pneumonia among Metalworkers due to Inhalation Exposure to Bacillus cereus Containing Bacillus anthracis Toxin Genes. Clin Infect Dis. 44(3): 414–416.
  • 17. Bottone EJ. (2010). Bacillus cereus, a Volatile Human Pathogen. Clin Microbiol Rev. 23: 382–398.
  • 18. Ikeda M, Yagihara Y, Tatsuno K, Okazaki M, Okugawa S, Moriya K. (2015). Clinical Characteristics and Antimicrobial Susceptibility of Bacillus cereus Blood Stream Infections. Ann Clin Microbiol Antimicrob. 14: 43.
  • 19. Oğuzman E, Çetin H, Kalem M, Karahan ZC, Evren E, Us E. (2020). Bacillus cereus’un Etken Olduğu Travma İlişkili Yara Enfeksiyonu. J Ankara Univ Fac Med. 73(1): 78-82.
  • 20. Rishi E, Rishi P, Sengupta S. et al. (2013). Acute Postoperative Bacillus cereus Endophthalmitis Mimicking Toxic Anterior Segment Syndrome. J Ophthalmol. 120: 181–185.
  • 21. Schiefer B, Macdonald KR, Klavano GG, Van Dreumel AA. (1976). Pathology of Bacillus cereus Mastitis in Dairy Cows. Can Vet J. 17(9): 239.
  • 22. Atyabi N, Vodjgani M, Gharagozloo F, Bahonar A. (2006). Prevalence of Bacterial Mastitis in Cattle from the Farms around Tehran. Iran J Vet Res. 7(3): 7679.
  • 23. Ghazali MF, Sukiman MZ, Chai MH, Mohamad NM, Ariffin SZ. (2022). Molecular Detection and Antibiogram of Bacillus cereus Isolated from Dairy Goat with Mastitis in Malaysia. Int J Infect Dis. 116: 63-64.
  • 24. Yumuşak M, Küçükayan U. (1995). Ankara Bölgesindeki Mastitisli İnek Sütlerinde Bacillus cereus Aranması. Etlik Vet Mikrobiyol Derg. 8(1): 198-217.
  • 25. International Organization for Standardization (ISO). (2004). Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of presumptive Bacillus cereus - Colony-count technique at 30 degrees. 7932.
  • 26. EUCAST: The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0, 01.01.2023. http://www.eucast.org
  • 27. Fiedler G, Schneider C, Igbinosa EO. et al. (2019). Antibiotics Resistance and Toxin Profiles of Bacillus cereus-group Isolates from Fresh Vegetables from German Retail Markets. BMC Microbiol. 19: 250.
  • 28. Frieri, M., Kumar, K., Boutin, A. (2017). Antibiotic resistance. J Infect Public Health. 10 (4): 369-378.
  • 29. Chen Y, Tenover FC, Koehler TM. (2004). Beta-Lactamase Gene Expression in a Penicillin-Resistant Bacillus anthracis Strain. Antimicrob Agents Chemother. 48(12): 4873–4877.
  • 30. Suthar AP, Kumar R, Savalia CV, Nayak DN, Kalyani IH, 2022: Determination of Prevalence and Multidrug Resistance Phenotypes of Bacillus cereus in Raw Chicken Meat and Swabs of Human Subjects. Pharma Innovation. 11(12): 1159-1164.
  • 31. Yu P, Yu S, Wang J. (2019). Bacillus cereus Isolated From Vegetables in China: Incidence, Genetic Diversity, Virulence Genes, and Antimicrobial Resistance. Front Microbiol. 10: 948.
  • 32. Park KM, Jeong M, Park KJ, Koo M. (2018). Prevalence, Enterotoxin Genes, and Antibiotic Resistance of Bacillus cereus Isolated from Raw Vegetables in Korea. J Food Prot. 81(10): 1590- 1597.
  • 33. Yıbar A, Çetinkaya F, Soyutemiz E, Yaman G. (2017). Prevalence, Enterotoxin Production and Antibiotic Resistance of Bacillus cereus Isolated from Milk and Cheese. Kafkas Univ Vet Fak Derg. 23(4): 635-642.
  • 34. Jung J, Jin H, Seo S. (2022). Short Communication: Enterotoxin Genes and Antibiotic Susceptibility of Bacillus cereus Isolated from Garlic Chives and Agricultural Environment. Int. J Environ Res Public Health. 19(19): 12159.
  • 35. Sornchuer P, Tiengtip R. (2021). Prevalence, Virulence Genes, and Antimicrobial Resistance of Bacillus cereus Isolated from Foodstuffs in Pathum Thani Province, Thailand. Pharm Sci Asia. 48(2): 194-203.

Determination of Susceptibility Profiles of B. cereus Strains towards Certain Antibiotics Isolated from Plant-Derived Foods

Yıl 2023, , 75 - 79, 31.12.2023
https://doi.org/10.47027/duvetfd.1298336

Öz

Bacillus cereus is a gram-positive, facultatively anaerobic, spore-forming bacterium. It is common in nature and it is isolated from foods such as spices, meat, milk, cereals, legumes and from mastitis cases and wound infections in animals. Studies on the detection of transferable antibiotic resistance genes in the food chain have gained importance after the World Health Organization declared the development and spread of antibiotic resistance in bacteria as one of the important health problems of the 21st century. This study aimed to determine the phenotypic susceptibility profiles of B. cereus strains isolated from various plant-derived foods against different groups of antibiotics. B. cereus was found at a rate of 19.7%, with concentrations ranging between 1.4x10² cfu/g and 1.0x10⁴ cfu/g, in a total of 152 plant-derived foods. The phenotypic susceptibility profiles of 30 isolated B. cereus strains against 8 different groups of antibiotics were tested using the disk diffusion method. Results were interpreted as susceptible, intermediate, or resistant according to the European Committee for Antimicrobial Susceptibility Testing (EUCAST) criteria.While all B. cereus strains were resistant to cefixime and amoxicillin/clavulanic acid, 3.4% were susceptible to sulphamethoxazole/trimethoprim, 6.6% were moderately susceptible, and 90% were resistant. The highest antibiotic susceptibility (100%) was found for chloramphenicol and (93.3%) for gentamicin, while tetracycline and erythromycin had the same sensitivity rate (56.7%). 83.3% of the strains were moderately susceptible to ciprofloxacin, and 16.7% were resistant.In conclusion, the determination of antibiotic susceptibility profiles in foodborne pathogens is crucial for monitoring the distribution of antibiotic resistance, creating appropriate treatment plans, and preventing the spread of antimicrobial resistance genes through foodborne pathogens.

Proje Numarası

-

Kaynakça

  • 1- Mills E, Sullivan E, Kovac J. (2022). Comparative Analysis of Bacillus cereus Group Isolates' Resistance Using Disk Diffusion and Broth Microdilution and the Correlation between Antimicrobial Resistance Phenotypes and Genotypes. Appl Environ Microbiol. 88(6): e0230221.
  • 2. Zhao S, Chen J, Fei P. et al. (2020) Prevalence, Molecular Characterization, and Antibiotic Susceptibility of Bacillus cereus Isolated from Dairy Products in China. J Dairy Sci. 103(5): 3994-4001.
  • 3. Park YB, Kim JB, Shin SW. et al. (2009). Prevalence, Genetic Diversity, and Antibiotic Susceptibility of Bacillus cereus Strains Isolated from Rice and Cereals Collected in Korea. J Food Prot. 72(3): 612-617.
  • 4. Özlük Çilak G, Halkman K. (2018). Çeşitli Besiyerlerinin Bacillus cereus Sporlanmasındaki Etkisi Üzerine Bir Araştırma. Gıda. 43(2): 347-355.
  • 5. Ehling-Schulz M, Lereclus D, Koehler TM. (2019) The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr. 7(3): 10.1128/microbiolspec.GPP3-0032-2018.
  • 6. Chon JW, Kim JH, Lee SJ, Hyeon JY, Seo KH. (2012). Toxin Profile, Antibiotic Resistance, and Phenotypic and Molecular Characterization of Bacillus cereus in Sunsik. Food Microbiol. 32(1): 217-222.
  • 7. Yu S, Yu P, Wang J. et al. (2020). A Study on Prevalence and Characterization of Bacillus cereus in Ready to-Eat Foods in China. Front Microbiol. 10: 3043.
  • 8. Agata N, Ohta M, Mori M, Isobe M. (1995). A Novel Dodecadepsipeptide, Cereulide, is an Emetic Toxin of Bacillus cereus. FEMS Microbiol Lett. 129(1): 17-20.
  • 9. Arnesen SLP, Fagerlund A, Granum PE. (2008). From Soil to Gut: Bacillus cereus and Its Food Poisoning Toxins. FEMS Microbiol Rev. 32(4): 579-606.
  • 10. Ehling-Schulz M, Messelhäusser U. (2012). One Pathogen but Two Different Types of Foodborne Outbreaks: Bacillus cereus in Catering Facilities in Germany. In Case Studies in Food Safety and Quality Management: Lessons from Real-Life Situations; Horfaar, J., Ed.; Woodhead: Cambridge, UK, pp. 63-70.
  • 11. Messelhäusser U, Frenzel E, Blöchinger C, Zucker R, Kämpf P, Ehling-Schulz M. (2014). Emetic Bacillus cereus are more Volatile than Thought: Recent Foodborne Outbreaks and Prevalence Studies in Bavaria (2007-2013). Biomed Res Int. 465603.
  • 12. Shinagawa K, Ueno Y, Hu D, Ueda S, Sugii S. (1996). Mouse Lethal Activity of a HEp-2 Vacuolation Factor, Cereulide, Produced by Bacillus cereus Isolated from Vomiting-Type Food Poisoning. JVMS. 58(10): 1027–1029.
  • 13. Clavel T, Carlin F, Lairon D, Nguyen-The C, Schmitt P. (2004). Survival of Bacillus cereus Spores and Vegetative Cells in Acid Media Simulating Human Stomach. J Appl Microbiol. 97(1): 214–219.
  • 14. Jessberger N, Dietrich R, Granum PE, Märtlbauer E. (2020). The Bacillus cereus Food Infection as Multifactorial Process. Toxins. 12(11): 701.
  • 15. Logan N. (2011). Bacillus and Relatives in Foodborne Illness. J Appl Microbiol. 112: 417–429.
  • 16. Avashia SB, Riggins WS, Lindley C. et al. (2007). Fatal Pneumonia among Metalworkers due to Inhalation Exposure to Bacillus cereus Containing Bacillus anthracis Toxin Genes. Clin Infect Dis. 44(3): 414–416.
  • 17. Bottone EJ. (2010). Bacillus cereus, a Volatile Human Pathogen. Clin Microbiol Rev. 23: 382–398.
  • 18. Ikeda M, Yagihara Y, Tatsuno K, Okazaki M, Okugawa S, Moriya K. (2015). Clinical Characteristics and Antimicrobial Susceptibility of Bacillus cereus Blood Stream Infections. Ann Clin Microbiol Antimicrob. 14: 43.
  • 19. Oğuzman E, Çetin H, Kalem M, Karahan ZC, Evren E, Us E. (2020). Bacillus cereus’un Etken Olduğu Travma İlişkili Yara Enfeksiyonu. J Ankara Univ Fac Med. 73(1): 78-82.
  • 20. Rishi E, Rishi P, Sengupta S. et al. (2013). Acute Postoperative Bacillus cereus Endophthalmitis Mimicking Toxic Anterior Segment Syndrome. J Ophthalmol. 120: 181–185.
  • 21. Schiefer B, Macdonald KR, Klavano GG, Van Dreumel AA. (1976). Pathology of Bacillus cereus Mastitis in Dairy Cows. Can Vet J. 17(9): 239.
  • 22. Atyabi N, Vodjgani M, Gharagozloo F, Bahonar A. (2006). Prevalence of Bacterial Mastitis in Cattle from the Farms around Tehran. Iran J Vet Res. 7(3): 7679.
  • 23. Ghazali MF, Sukiman MZ, Chai MH, Mohamad NM, Ariffin SZ. (2022). Molecular Detection and Antibiogram of Bacillus cereus Isolated from Dairy Goat with Mastitis in Malaysia. Int J Infect Dis. 116: 63-64.
  • 24. Yumuşak M, Küçükayan U. (1995). Ankara Bölgesindeki Mastitisli İnek Sütlerinde Bacillus cereus Aranması. Etlik Vet Mikrobiyol Derg. 8(1): 198-217.
  • 25. International Organization for Standardization (ISO). (2004). Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of presumptive Bacillus cereus - Colony-count technique at 30 degrees. 7932.
  • 26. EUCAST: The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0, 01.01.2023. http://www.eucast.org
  • 27. Fiedler G, Schneider C, Igbinosa EO. et al. (2019). Antibiotics Resistance and Toxin Profiles of Bacillus cereus-group Isolates from Fresh Vegetables from German Retail Markets. BMC Microbiol. 19: 250.
  • 28. Frieri, M., Kumar, K., Boutin, A. (2017). Antibiotic resistance. J Infect Public Health. 10 (4): 369-378.
  • 29. Chen Y, Tenover FC, Koehler TM. (2004). Beta-Lactamase Gene Expression in a Penicillin-Resistant Bacillus anthracis Strain. Antimicrob Agents Chemother. 48(12): 4873–4877.
  • 30. Suthar AP, Kumar R, Savalia CV, Nayak DN, Kalyani IH, 2022: Determination of Prevalence and Multidrug Resistance Phenotypes of Bacillus cereus in Raw Chicken Meat and Swabs of Human Subjects. Pharma Innovation. 11(12): 1159-1164.
  • 31. Yu P, Yu S, Wang J. (2019). Bacillus cereus Isolated From Vegetables in China: Incidence, Genetic Diversity, Virulence Genes, and Antimicrobial Resistance. Front Microbiol. 10: 948.
  • 32. Park KM, Jeong M, Park KJ, Koo M. (2018). Prevalence, Enterotoxin Genes, and Antibiotic Resistance of Bacillus cereus Isolated from Raw Vegetables in Korea. J Food Prot. 81(10): 1590- 1597.
  • 33. Yıbar A, Çetinkaya F, Soyutemiz E, Yaman G. (2017). Prevalence, Enterotoxin Production and Antibiotic Resistance of Bacillus cereus Isolated from Milk and Cheese. Kafkas Univ Vet Fak Derg. 23(4): 635-642.
  • 34. Jung J, Jin H, Seo S. (2022). Short Communication: Enterotoxin Genes and Antibiotic Susceptibility of Bacillus cereus Isolated from Garlic Chives and Agricultural Environment. Int. J Environ Res Public Health. 19(19): 12159.
  • 35. Sornchuer P, Tiengtip R. (2021). Prevalence, Virulence Genes, and Antimicrobial Resistance of Bacillus cereus Isolated from Foodstuffs in Pathum Thani Province, Thailand. Pharm Sci Asia. 48(2): 194-203.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Cerrahi, Veteriner Bilimleri (Diğer)
Bölüm Araştıma
Yazarlar

Semiha Yalçın 0000-0002-9344-0472

Başak Gökçe Çöl 0000-0002-7627-9867

Harun Aksu 0000-0001-5948-2030

Proje Numarası -
Erken Görünüm Tarihi 28 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Kabul Tarihi 12 Eylül 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yalçın, S., Çöl, B. G., & Aksu, H. (2023). Bitkisel Kaynaklı Gıdalardan İzole Edilen B. cereus Suşlarının Bazı Antibiyotiklere Karşı Duyarlılık Profillerinin Belirlenmesi. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 16(2), 75-79. https://doi.org/10.47027/duvetfd.1298336
AMA Yalçın S, Çöl BG, Aksu H. Bitkisel Kaynaklı Gıdalardan İzole Edilen B. cereus Suşlarının Bazı Antibiyotiklere Karşı Duyarlılık Profillerinin Belirlenmesi. Dicle Üniv Vet Fak Derg. Aralık 2023;16(2):75-79. doi:10.47027/duvetfd.1298336
Chicago Yalçın, Semiha, Başak Gökçe Çöl, ve Harun Aksu. “Bitkisel Kaynaklı Gıdalardan İzole Edilen B. Cereus Suşlarının Bazı Antibiyotiklere Karşı Duyarlılık Profillerinin Belirlenmesi”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 16, sy. 2 (Aralık 2023): 75-79. https://doi.org/10.47027/duvetfd.1298336.
EndNote Yalçın S, Çöl BG, Aksu H (01 Aralık 2023) Bitkisel Kaynaklı Gıdalardan İzole Edilen B. cereus Suşlarının Bazı Antibiyotiklere Karşı Duyarlılık Profillerinin Belirlenmesi. Dicle Üniversitesi Veteriner Fakültesi Dergisi 16 2 75–79.
IEEE S. Yalçın, B. G. Çöl, ve H. Aksu, “Bitkisel Kaynaklı Gıdalardan İzole Edilen B. cereus Suşlarının Bazı Antibiyotiklere Karşı Duyarlılık Profillerinin Belirlenmesi”, Dicle Üniv Vet Fak Derg, c. 16, sy. 2, ss. 75–79, 2023, doi: 10.47027/duvetfd.1298336.
ISNAD Yalçın, Semiha vd. “Bitkisel Kaynaklı Gıdalardan İzole Edilen B. Cereus Suşlarının Bazı Antibiyotiklere Karşı Duyarlılık Profillerinin Belirlenmesi”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 16/2 (Aralık 2023), 75-79. https://doi.org/10.47027/duvetfd.1298336.
JAMA Yalçın S, Çöl BG, Aksu H. Bitkisel Kaynaklı Gıdalardan İzole Edilen B. cereus Suşlarının Bazı Antibiyotiklere Karşı Duyarlılık Profillerinin Belirlenmesi. Dicle Üniv Vet Fak Derg. 2023;16:75–79.
MLA Yalçın, Semiha vd. “Bitkisel Kaynaklı Gıdalardan İzole Edilen B. Cereus Suşlarının Bazı Antibiyotiklere Karşı Duyarlılık Profillerinin Belirlenmesi”. Dicle Üniversitesi Veteriner Fakültesi Dergisi, c. 16, sy. 2, 2023, ss. 75-79, doi:10.47027/duvetfd.1298336.
Vancouver Yalçın S, Çöl BG, Aksu H. Bitkisel Kaynaklı Gıdalardan İzole Edilen B. cereus Suşlarının Bazı Antibiyotiklere Karşı Duyarlılık Profillerinin Belirlenmesi. Dicle Üniv Vet Fak Derg. 2023;16(2):75-9.