Araştırma Makalesi
BibTex RIS Kaynak Göster

Global Gerçek Evapotranspirasyon (ETa) Haritalarından Arazi Kullanım Sınıflarına Ait ETa Kayıplarının Tahmini

Yıl 2021, Cilt: 4 Sayı: 1, 18 - 26, 31.07.2021
https://doi.org/10.55581/ejeas.936950

Öz

Günümüzde uydu görüntüleri kullanılarak gerçek evapotranspirasyon kayıplarının hesaplandığı çeşitli modeller geliştirilmiştir. Amerika Birleşik Devletleri Jeoloji Araştırmaları Kurumu tarafından Operasyonel Basitleştirilmiş Yüzey Enerji Dengesi Modeli kullanılarak üretilen global gerçek evapotranspirasyon haritaları bunlara örnektir. Uzamsal çözünürlüğü 1x1 km olan bu haritaların pikselleri içerisinde birden fazla arazi kullanım sınıfının yer aldığı durumlarda, bu haritalar kullanılarak arazi kullanım sınıflarına ait gerçek evapotranspirasyon kayıplarının hassas bir şekilde belirlenmesi güçleşmektedir. Bu çalışmada; piksel boyutu kısıtlamasına bağlı kalmadan, global gerçek evapotranspirasyon haritalarından arazi kullanım sınıflarına ait gerçek evapotranspirasyon kayıplarının tahmini amacıyla, çoklu regresyon analizine dayalı bir model geliştirilmiştir. İstanbul İli Terkos su havzası kapsamında geliştirilmiş bu modelde; alt havzalara ait aylık gerçek evapotranspirasyon değerleri ile alt havzalardaki arazi kullanım sınıflarına ait aylık referans evapotranspirasyon değerleri arasında bir bağıntı kurulmuştur. Alt havzaların aylık gerçek evapotranspirasyon değerleri global gerçek evapotranspiasyon haritalarından elde edilmiştir. Aylık referans evapotranspirasyon değerleri Penman-Monteith yöntemine göre hesaplanmıştır. Arazi kullanım sınıfları Landsat uydu görüntüleri kullanılarak belirlenmiştir. Model sonucunda ölçüm ve tahmin değerleri arasında kök ortalama kare hata 11.4 olarak, R2
katsayısı ise 0.963 olarak bulunmuş ve modelden elde edilen çoklu regresyon bağıntısı kullanılarak Terkos havzasındaki arazi kullanım sınıflarına ait aylık gerçek evapotranspirasyon kayıpları belirlenmiştir. 

Kaynakça

  • Córdova M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., & Célleri, R. (015). Evaluation of the Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data. Mountain Research and Development, 35(3), 230-239.
  • Senay, G. B., Kagone, S., & Velpuri, N. M. (2020). Operational global actual evapotranspiration: Development, evaluation and dissemination, Sensors, 20, 1915.
  • Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri N. M., Alemu, H., & Verdin, J. P. (2013). Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. Journal Of The American Water Resources Association, 49(3), 577-591.
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper (Vol. 56). Rome: FAO.
  • Celestin, S., Qi, F., Li, R., Yu, T., & Cheng, W. (2020). Evaluation of 32 simple equations against the Penman–Monteith method to estimate the reference evapotranspiration in the Hexi Corridor, Northwest China. Water, 12, 2772.
  • Debnath, S., Adamala, S., & Raghuwanshi, N. S. (2015). Sensitivity analysis of FAO-56 Penman-Monteith method for different agro-ecological regions of India. Environmental Processes, 2, 689–704.
  • Lang, D., Zheng, J., Shi, J., Liao, F., Ma, X., Wang, W., Chen, X., & Zhang, M. (2017). A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman–Monteith method in Southwestern China, Water, 9, 734.
  • Hao, X., Zhang, S., Li, W., Duan, W., Fang, G., Zhang, Y., & Guo, B. (2018). The uncertainty of Penman-Monteith method and the energy balance closure problem. Journal of Geophysical Research: Atmospheres,123, 7433–7443.
  • Djamana, K., Baldea, A. B., Sowa, A., Mullera, B., Irmak, S., N’Diayea, M. K., Manneha, B., Moukoumbia, Y. D., Futakuchic, K., & Saito, K. (2015). Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies, 3, 139–159.
  • Song, X., Lu, F., Xiao, W., Zhu, K., Zhou, Y., & Xie, Z. (2019). Performance of 12 reference evapotranspiration estimation methods compared with the Penman–Monteith method and the potential influences in Northeast China, Meteorological Applications, 26, 83–96.
  • McShane, R. R., Driscoll, K. P., & Sando, R. (2017). A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents: U.S. Geological Survey Scientific Investigations Report 2017–5087.
  • Savoca, M. E., Senay, G. B., Maupin, M. A., Kenny, J. F., & Perry, C.A. (2013). Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach: U.S. Geological Survey Scientific Investigations Report 2013-5126.
  • Senay, G. B., Gowda, P. H., Bohms, S., Howell, T. A., Friedrichs, M., Marek, T. H., & Verdi, J. P. (2014). Evaluating the SSEBop approach for evapotranspiration mapping with landsat data using lysimetric observations in the semi-arid Texas High Plains. Hydrology and Earth System Sciences Discussions, 11, 723–756.
  • Senay, G. B., MFriedrichs, M., Singh, R. K., & Velpuri, N. M. (2016). Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin, Remote Sensing of Environment, 185,171–185.
  • Chen, M., Senay, G. B., Singh, R. K., & Verdin, J. P. (2016). Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites, Journal of Hydrology, 536, 384–399.
  • Paula, A.C.P. de, Silva, C.L. da, Rodrigues, L.N., & Schererwarren, M. (2019). Performance of the SSEBop model in the estimation of the actual evapotranspiration of soybean and bean crops. Pesquisa Agropecuária Brasileira, 54, e00739.
  • Senay, G. B., Schauer, M., Velpuri, N. M., Singh, R. K., Kagone, S., Friedrichs, M., Litvak, M. E., & Douglas-Mankin, K. R. (2019). Long-term (1986–2015) crop water use characterization over the Upper Rio Grande Basin of United States and Mexico using Landsat-based evapotranspiration. Remote Sensing, 11, 1587.
  • Ayyad, S., Al Zayed, I. S., Ha, V. T. T., & Ribbe, L. (2019). The performance of satellite-based actual evapotranspiration products and the assessment of irrigation efficiency in Egypt. Water,11, 1913.
  • Chen, F. W., & Liu, C. W. (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environment, 10, 209-222.
  • Samanta, S., Pal, D. K., Lohar, D., & Pal, B. (2012). Interpolation of climate variables and temperature modeling. Theoretical and Applied Climatology, May 2012.
  • Yang, X., Xie, X., Liu, D. L., Ji, F., & Wang, L. (2015). Spatial interpolation of daily rainfall data for local climate impact assessment over Greater Sydney Region. Advances in Meteorology, 563629.

Actual Evapotranspiration (ETa) Estimation For Land Use Classes From Global ETa Maps

Yıl 2021, Cilt: 4 Sayı: 1, 18 - 26, 31.07.2021
https://doi.org/10.55581/ejeas.936950

Öz

Today, various models have been developed in which real evapotranspiration losses are calculated using satellite images. Global actual evapotranspiration maps produced by the United States Geological Survey using Operational Simplified Surface Energy Balance Model are examples of these. In cases where more than one land use class is included in the pixels of these maps with a spatial resolution of 1x1 km, it becomes difficult to accurately determine the actual evapotranspiration losses of land use classes using these maps. In this study; a model based on multiple regression analysis was developed in order to estimate the actual evapotranspiration losses belonging to land use classes from global actual evapotranspiration maps without being bound by the pixel size limitation. In this model developed within the scope of Istanbul Province Terkos water basin; a relation was established between monthly actual evapotranspiration values of sub-basins and monthly reference evapotranspiration values of land use classes in subbasins. Monthly actual evapotranspiration values of sub-basins were obtained from global actual evapotranspiration maps. Monthly reference evapotranspiration values were calculated according to the Penman-Monteith method. Land use classes were determined using Landsat satellite images. As a result of the model, the root mean square error between the measurement and prediction values was found as 11.4 and the R2 coefficient as 0.963. Monthly actual evapotranspiration losses for land use classes in the Terkos basin were determined using the multiple regression relation obtained from the model.

Kaynakça

  • Córdova M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., & Célleri, R. (015). Evaluation of the Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data. Mountain Research and Development, 35(3), 230-239.
  • Senay, G. B., Kagone, S., & Velpuri, N. M. (2020). Operational global actual evapotranspiration: Development, evaluation and dissemination, Sensors, 20, 1915.
  • Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri N. M., Alemu, H., & Verdin, J. P. (2013). Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. Journal Of The American Water Resources Association, 49(3), 577-591.
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper (Vol. 56). Rome: FAO.
  • Celestin, S., Qi, F., Li, R., Yu, T., & Cheng, W. (2020). Evaluation of 32 simple equations against the Penman–Monteith method to estimate the reference evapotranspiration in the Hexi Corridor, Northwest China. Water, 12, 2772.
  • Debnath, S., Adamala, S., & Raghuwanshi, N. S. (2015). Sensitivity analysis of FAO-56 Penman-Monteith method for different agro-ecological regions of India. Environmental Processes, 2, 689–704.
  • Lang, D., Zheng, J., Shi, J., Liao, F., Ma, X., Wang, W., Chen, X., & Zhang, M. (2017). A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman–Monteith method in Southwestern China, Water, 9, 734.
  • Hao, X., Zhang, S., Li, W., Duan, W., Fang, G., Zhang, Y., & Guo, B. (2018). The uncertainty of Penman-Monteith method and the energy balance closure problem. Journal of Geophysical Research: Atmospheres,123, 7433–7443.
  • Djamana, K., Baldea, A. B., Sowa, A., Mullera, B., Irmak, S., N’Diayea, M. K., Manneha, B., Moukoumbia, Y. D., Futakuchic, K., & Saito, K. (2015). Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies, 3, 139–159.
  • Song, X., Lu, F., Xiao, W., Zhu, K., Zhou, Y., & Xie, Z. (2019). Performance of 12 reference evapotranspiration estimation methods compared with the Penman–Monteith method and the potential influences in Northeast China, Meteorological Applications, 26, 83–96.
  • McShane, R. R., Driscoll, K. P., & Sando, R. (2017). A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents: U.S. Geological Survey Scientific Investigations Report 2017–5087.
  • Savoca, M. E., Senay, G. B., Maupin, M. A., Kenny, J. F., & Perry, C.A. (2013). Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach: U.S. Geological Survey Scientific Investigations Report 2013-5126.
  • Senay, G. B., Gowda, P. H., Bohms, S., Howell, T. A., Friedrichs, M., Marek, T. H., & Verdi, J. P. (2014). Evaluating the SSEBop approach for evapotranspiration mapping with landsat data using lysimetric observations in the semi-arid Texas High Plains. Hydrology and Earth System Sciences Discussions, 11, 723–756.
  • Senay, G. B., MFriedrichs, M., Singh, R. K., & Velpuri, N. M. (2016). Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin, Remote Sensing of Environment, 185,171–185.
  • Chen, M., Senay, G. B., Singh, R. K., & Verdin, J. P. (2016). Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites, Journal of Hydrology, 536, 384–399.
  • Paula, A.C.P. de, Silva, C.L. da, Rodrigues, L.N., & Schererwarren, M. (2019). Performance of the SSEBop model in the estimation of the actual evapotranspiration of soybean and bean crops. Pesquisa Agropecuária Brasileira, 54, e00739.
  • Senay, G. B., Schauer, M., Velpuri, N. M., Singh, R. K., Kagone, S., Friedrichs, M., Litvak, M. E., & Douglas-Mankin, K. R. (2019). Long-term (1986–2015) crop water use characterization over the Upper Rio Grande Basin of United States and Mexico using Landsat-based evapotranspiration. Remote Sensing, 11, 1587.
  • Ayyad, S., Al Zayed, I. S., Ha, V. T. T., & Ribbe, L. (2019). The performance of satellite-based actual evapotranspiration products and the assessment of irrigation efficiency in Egypt. Water,11, 1913.
  • Chen, F. W., & Liu, C. W. (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environment, 10, 209-222.
  • Samanta, S., Pal, D. K., Lohar, D., & Pal, B. (2012). Interpolation of climate variables and temperature modeling. Theoretical and Applied Climatology, May 2012.
  • Yang, X., Xie, X., Liu, D. L., Ji, F., & Wang, L. (2015). Spatial interpolation of daily rainfall data for local climate impact assessment over Greater Sydney Region. Advances in Meteorology, 563629.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Fırat Peker 0000-0002-3971-6108

Hürrem Bayhan 0000-0003-4873-9253

Atilla Akkoyunlu 0000-0003-0780-3749

Yayımlanma Tarihi 31 Temmuz 2021
Gönderilme Tarihi 13 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 1