Araştırma Makalesi
BibTex RIS Kaynak Göster

Mor Şalgam (Brassica rapa L.) Kabuk Atıklarının Değerlendirilmesi: Ultrasonik Destekli Ekstraksiyon ile Polifenoliklerin Ekstraksiyonu ve in vitro Mide-Bağırsak Sindirim Sırasında Toplam Fenolik Madde, Toplam Monomerik Antosiyanin Miktarı ve Toplam Antioksidan Kapasitedeki Değişimin Araştırılması

Yıl 2021, Sayı: 27, 152 - 157, 30.11.2021
https://doi.org/10.31590/ejosat.949244

Öz

Meyve-sebzeler sağlık üzerinde olumlu etkileri olan yüksek düzeyde biyoaktif bileşenler içermektedir. Özellikle meyve-sebzelerin yenilmeyen kısımlarından olan kabuklar, polifenolik bileşiklerin burada birikmesinden dolayı, iç veya çekirdeklerine göre daha yüksek oranda polifenolik bileşikler içermektedir. Mor şalgam (Brassica rapa L.), besinsel içeriğinden dolayı Brassicaceae ailesinin önemli üyelerinden biridir. Bu bağlamda, bu çalışmanın amacını, mor şalgam sebzesinden kabukların in vitro mide-bağırsak sindirim öncesi ve sonrasında, spektrofotometrik yöntemlerden olan toplam fenolik madde için Folin-Ciocalteu metodu, toplam monomerik antosiyanin içerik için pH diferansiyel metot ve toplam antioksidan kapasite için CUPRAC ve DPPH yöntemlerini kullanarak, doğal bir antioksidan kaynağı olarak potansiyelinin araştırılması oluşturmaktadır. Çalışmanın sonuçlarına göre, ultrases destekli ekstraksyon ile elde edilen polifenolik eksraktın toplam fenolik ve toplam monomerik antosiyanin içerikleri sırasıyla kuru ağırlıkta 169,29±6,89 mg GAE/g ve 159,53±10,82 mg CGE/L olarak bulunmuştur. Ekstraktların toplam antioksidan kapasitesi ise CUPRAC yöntemi ile kuru ağırlıkta 44,19±0,10 mg TE/g ve DPPH yöntemi ile 38,52±0,06 mg TE/g olarak tespit edilmiştir. Ekstraktların in vitro sindirim sonrası, toplam fenolik ve antosiyaninlerin biyoerişilebilirliği yaklaşık olarak sırasıyla %17 ve %7 olarak hesaplanmıştır. Ayrıca biyoerişilebilir ekstrakt fraksiyonunun antioksidan kapasitesi CUPRAC yöntemi ile yaklaşık %28 ve DPPH yöntemi ile yaklaşık %0 olarak bulunmuştur.

Kaynakça

  • Albero, B., Tadeo, J. L., & Pérez, R. A. (2019). Ultrasound-assisted extraction of organic contaminants. TrAC Trends in Analytical Chemistry, 118, 739-750.
  • Ali, H., Houghton, P., & Soumyanath, A. (2006). α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of ethnopharmacology, 107(3), 449-455.
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. Doi: 10.1021/jf048741x
  • Apak, R., Gorinstein, S., B¨ohm, V., Schaich, K. M., ¨Ozyürek, M., & Güçlü, K. (2013). Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC technical report). Pure and Applied Chemistry, 85(5), 957–998.
  • Azam, A., Khan, I., Mahmood, A., & Hameed, A. (2013). Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide. Journal of the Science of Food and Agriculture, 93(13), 3237-3244.
  • Azima, A. S., Noriham, A., & Manshoor, N. (2017). Phenolics, antioxidants and color properties of aqueous pigmented plant extracts: Ardisia colorata var. elliptica, Clitoria ternatea, Garcinia mangostana and Syzygium cumini. Journal of Functional Foods, 38, 232-241.
  • Bakht, M. A., Geesi, M. H., Riadi, Y., Imran, M., Ali, M. I., Ahsan, M. J., & Ajmal, N. (2019). Ultrasound-assisted extraction of some branded tea: Optimization based on polyphenol content, antioxidant potential and thermodynamic study. Saudi journal of biological sciences, 26(5), 1043-1052.
  • Banihani, S. A. (2017). Radish (Raphanus sativus) and diabetes. Nutrients, 9(9), 1014.
  • Barillari, J., Cervellati, R., Costa, S., Guerra, M. C., Speroni, E., Utan, A., & Iori, R. (2006). Antioxidant and choleretic properties of Raphanus sativus L. sprout (Kaiware Daikon) extract. Journal of agricultural and food chemistry, 54(26), 9773-9778.
  • Chandrasekara, A., & Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. Journal of Functional Foods, 4(1), 226-237.
  • Chel-Guerrero, L. D., Sauri-Duch, E., Fragoso-Serrano, M. C., Pérez-Flores, L. J., Gómez-Olivares, J. L., Salinas-Arreortua, N., ... & Mendoza-Espinoza, J. A. (2018). Phytochemical profile, toxicity, and pharmacological potential of peels from four species of tropical fruits. Journal of medicinal food, 21(7), 734-743.
  • de la Fuente, B., L´opez-García, G., M´a˜nez, V., Alegría, A., Barber´a, R., & Cilla, A. (2019). Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods, 8(7), 250.
  • Đurović, S., Nikolić, B., Luković, N., Jovanović, J., Stefanović, A., Šekuljica, N., . . . Knežević-Jugović, Z. (2018). The impact of high-power ultrasound and microwave on the phenolic acid profile and antioxidant activity of the extract from yellow soybean seeds. Industrial Crops and Products, 122, 223-231.
  • Golmohamadi, A., Möller, G., Powers, J., & Nindo, C. (2013). Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrasonics sonochemistry, 20(5), 1316-1323.
  • Goulas, V., & Hadjisolomou, A. (2019). Dynamic changes in targeted phenolic compounds and antioxidant potency of carob fruit (Ceratonia siliqua L.) products during in vitro digestion. LWT, 101, 269-275.
  • Gras, C.C., Carle, R., Schweiggert, R.M. 2017. Determination of anthocyanins from black carrots by UHPLC-PDA after ultrasound-assisted extraction, Journal of Food Composition and Analysis, 44, 170–177.
  • Hanlon, P. R., & Barnes, D. M. (2011). Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots. Journal of Food Science, 76(1), C185-C192.
  • Hanlon, P. R., Robbins, M. G., Hammon, L. D., & Barnes, D. M. (2009). Aqueous extract from the vegetative portion of Spanish black radish (Raphanus sativus L. var. niger) induces detoxification enzyme expression in HepG2 cells. Journal of functional foods, 1(4), 356-365.
  • He, J., & Giusti, M. M. (2011). High-purity isolation of anthocyanins mixtures from fruits and vegetables–A novel solid-phase extraction method using mixed mode cation-exchange chromatography. Journal of Chromatography A, 1218(44), 7914-7922.
  • Helrich, K. (1990). Official Methods of analysis of the Association of Official Analytical Chemisty.
  • Jiang, W., & Zhou, X. (2019). Hydrolysis of radish anthocyanins to enhance the antioxidant and antiproliferative capacities. Food Chemistry, 294, 477-485.
  • Jovanović, A. A., Đorđević, V. B., Zdunić, G. M., Pljevljakušić, D. S., Šavikin, K. P., Gođevac, D. M., & Bugarski, B. M. (2017). Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat-and ultrasound-assisted techniques. Separation and Purification Technology, 179, 369-380.
  • Kazeem, M., Adamson, J., & Ogunwande, I. (2013). Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed research international, 2013.
  • Kjeldahl, C. (1883). A new method for the determination of nitrogen in organic matter. Z Anal Chem, 22, 366.
  • Kulkarni, V. M., & Rathod, V. K. (2014). Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves. Ultrasonics sonochemistry, 21(2), 606-611.
  • Kumaran, A., & Karunakaran, R. J. (2006). Anti-oxidant activity of polyphenols from Phyllanthus debilis Klein ex Willd. Journal of Natural remedies, 6(2), 141-146.
  • Ma, Y., Yang, Y., Gao, J., Feng, J., Shang, Y., & Wei, Z. (2020). Phenolics and antioxidant activity of bamboo leaves soup as affected by in vitro digestion. Food and Chemical Toxicology, 135, 110941.
  • Mansour, M., Salah, M., & Xu, X. (2020). Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions. Ultrasonics sonochemistry, 63, 104927. Ojha, K. S., Aznar, R., O'Donnell, C., & Tiwari, B. K. (2020). Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC Trends in Analytical Chemistry, 122, 115663.
  • Pająk, P., Socha, R., Gałkowska, D., Rożnowski, J., & Fortuna, T. (2014). Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry, 143, 300-306.
  • Park, C. H., Baskar, T. B., Park, S. Y., Kim, S. J., Valan Arasu, M., Al-Dhabi, N. A., ... & Park, S. U. (2016). Metabolic profiling and antioxidant assay of metabolites from three radish cultivars (Raphanus sativus). Molecules, 21(2), 157.
  • Salah‐Abbès, J. B., Abbès, S., Houas, Z., Abdel‐Wahhab, M. A., & Oueslati, R. (2008). Zearalenone induces immunotoxicity in mice: possible protective effects of radish extract (Raphanus sativus). Journal of Pharmacy and Pharmacology, 60(6), 761-770.
  • Sarwari, G., Sultana, B., Sarfraz, R. A., & Zia, M. A. (2019). Cytotoxicity, antioxidant and antimutagenic potential evaluation of peels of edible roots and tubers. International Food Research Journal, 26(6).
  • Siewe, F. B., Kudre, T. G., & Narayan, B. (2020). Optimisation of ultrasound-assisted enzymatic extraction conditions of umami compounds from fish by-products using the combination of fractional factorial design and central composite design. Food Chemistry, 334, 127498.
  • Sukor, N., Jusoh, R., Kamarudin, N., Halim, N. A., Sulaiman, A., & Abdullah, S. (2020). Synergistic effect of probe sonication and ionic liquid for extraction of phenolic acids from oak galls. Ultrasonics sonochemistry, 62, 104876.
  • Świeca, M., Gawlik-Dziki, U., Dziki, D., Baraniak, B., & Czyż, J. (2013). The influence of protein–flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin. Food Chemistry, 141(1), 451-458.
  • Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599-606.
  • Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109.
  • Toor, R. K., & Savage, G. P. (2006). Effect of semi-drying on the antioxidant components of tomatoes. Food Chemistry, 94(1), 90-97.
  • Tomas, M., Zhang, L., Zengin, G., Rocchetti, G., Capanoglu, E., & Lucini, L. (2021). Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Food Research International, 140, 110039.
  • Torić, J., Brozovic, A., Baus Lončar, M., Jakobušić Brala, C., Karković Marković, A., Benčić, Đ., & Barbarić, M. (2020). Biological Activity of Phenolic Compounds in Extra Virgin Olive Oils through Their Phenolic Profile and Their Combination with Anticancer Drugs Observed in Human Cervical Carcinoma and Colon Adenocarcinoma Cells. Antioxidants, 9(5), 453.
  • Vinholes, J., Reis, S. F., Lemos, G., Barbieri, R. L., de Freitas, V., Franzon, R. C., & Vizzotto, M. (2018). Effect of in vitro digestion on the functional properties of Psidium cattleianum Sabine (araçá), Butia odorata (Barb. Rodr.) Noblick (butiá) and Eugenia uniflora L.(pitanga) fruit extracts. Food & function, 9(12), 6380-6390.
  • Xiao, Z., Rausch, S. R., Luo, Y., Sun, J., Yu, L., Wang, Q., ... & Stommel, J. R. (2019). Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT, 101, 731-737.
  • Yücetepe, A., Altin, G., & Özçelik, B. (2021). A novel antioxidant source: evaluation of in vitro bioaccessibility, antioxidant activity and polyphenol profile of phenolic extract from black radish peel wastes (Raphanus sativus L. var. niger) during simulated gastrointestinal digestion. International Journal of Food Science & Technology, 56(3), 1376-1384.

Valorization of Peel Wastes of Purple Turnip (Brassica rapa L.): Extraction of Polyphenolics Through Ultrasonic-Assisted Extraction and Investigation of Changes in Total Phenolic Content, Total Monomeric Anthocyanin Content and Total Antioxidant Capacity During in vitro Gastro-Intestinal Digestion

Yıl 2021, Sayı: 27, 152 - 157, 30.11.2021
https://doi.org/10.31590/ejosat.949244

Öz

Fruits and vegetables include high levels of bioactive compounds with health-promoting effects. Especially, peels, which are one of the generaly inedible fractions of fruit or vegetable, have higher amount of polyphenolic compounds than their pulps or seeds, since they accumulate in their peels. Purple turnip (Brassica rapa L.) is one of the important members of Brassicaceae family due to its nutritional composition. In this context, the aim of the study was to reveal the potency of peels from purple turnip as a natural antioxidant ingredient To reach this aim, the spectrophotometric assays including the Folin-Ciocalteu method for total phenolic content (TPC), the pH differential method for total monomeric anthocyanin content (TMAC) and CUPRAC and DPPH methods for total antioxidant capacity (TAC) before and after in vitro gastro-intestinal digestion were carried out. According to results of the study, TPC and TMAC of the polyphenolic axtract obtained by ultrasound-assisted extraction were 169.29±6.89 mg GAE/g dw and 159.53±10.82 mg CGE/L, respectively. The TAC of the extracts was 44.19±0.10 mg TE/g dw in CUPRAC assay and 38.52±0.06 mg TE/g dw in DPPH assay. The bioaccessibilities of total phenolics and anthocyanins from extracts after in vitro digestion process were approximately 17% and 6% and the antioxidant capacity of the bioaccessible extract fraction was approximately 28% (CUPRAC) and 0% (DPPH).

Kaynakça

  • Albero, B., Tadeo, J. L., & Pérez, R. A. (2019). Ultrasound-assisted extraction of organic contaminants. TrAC Trends in Analytical Chemistry, 118, 739-750.
  • Ali, H., Houghton, P., & Soumyanath, A. (2006). α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of ethnopharmacology, 107(3), 449-455.
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. Doi: 10.1021/jf048741x
  • Apak, R., Gorinstein, S., B¨ohm, V., Schaich, K. M., ¨Ozyürek, M., & Güçlü, K. (2013). Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC technical report). Pure and Applied Chemistry, 85(5), 957–998.
  • Azam, A., Khan, I., Mahmood, A., & Hameed, A. (2013). Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide. Journal of the Science of Food and Agriculture, 93(13), 3237-3244.
  • Azima, A. S., Noriham, A., & Manshoor, N. (2017). Phenolics, antioxidants and color properties of aqueous pigmented plant extracts: Ardisia colorata var. elliptica, Clitoria ternatea, Garcinia mangostana and Syzygium cumini. Journal of Functional Foods, 38, 232-241.
  • Bakht, M. A., Geesi, M. H., Riadi, Y., Imran, M., Ali, M. I., Ahsan, M. J., & Ajmal, N. (2019). Ultrasound-assisted extraction of some branded tea: Optimization based on polyphenol content, antioxidant potential and thermodynamic study. Saudi journal of biological sciences, 26(5), 1043-1052.
  • Banihani, S. A. (2017). Radish (Raphanus sativus) and diabetes. Nutrients, 9(9), 1014.
  • Barillari, J., Cervellati, R., Costa, S., Guerra, M. C., Speroni, E., Utan, A., & Iori, R. (2006). Antioxidant and choleretic properties of Raphanus sativus L. sprout (Kaiware Daikon) extract. Journal of agricultural and food chemistry, 54(26), 9773-9778.
  • Chandrasekara, A., & Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. Journal of Functional Foods, 4(1), 226-237.
  • Chel-Guerrero, L. D., Sauri-Duch, E., Fragoso-Serrano, M. C., Pérez-Flores, L. J., Gómez-Olivares, J. L., Salinas-Arreortua, N., ... & Mendoza-Espinoza, J. A. (2018). Phytochemical profile, toxicity, and pharmacological potential of peels from four species of tropical fruits. Journal of medicinal food, 21(7), 734-743.
  • de la Fuente, B., L´opez-García, G., M´a˜nez, V., Alegría, A., Barber´a, R., & Cilla, A. (2019). Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods, 8(7), 250.
  • Đurović, S., Nikolić, B., Luković, N., Jovanović, J., Stefanović, A., Šekuljica, N., . . . Knežević-Jugović, Z. (2018). The impact of high-power ultrasound and microwave on the phenolic acid profile and antioxidant activity of the extract from yellow soybean seeds. Industrial Crops and Products, 122, 223-231.
  • Golmohamadi, A., Möller, G., Powers, J., & Nindo, C. (2013). Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrasonics sonochemistry, 20(5), 1316-1323.
  • Goulas, V., & Hadjisolomou, A. (2019). Dynamic changes in targeted phenolic compounds and antioxidant potency of carob fruit (Ceratonia siliqua L.) products during in vitro digestion. LWT, 101, 269-275.
  • Gras, C.C., Carle, R., Schweiggert, R.M. 2017. Determination of anthocyanins from black carrots by UHPLC-PDA after ultrasound-assisted extraction, Journal of Food Composition and Analysis, 44, 170–177.
  • Hanlon, P. R., & Barnes, D. M. (2011). Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots. Journal of Food Science, 76(1), C185-C192.
  • Hanlon, P. R., Robbins, M. G., Hammon, L. D., & Barnes, D. M. (2009). Aqueous extract from the vegetative portion of Spanish black radish (Raphanus sativus L. var. niger) induces detoxification enzyme expression in HepG2 cells. Journal of functional foods, 1(4), 356-365.
  • He, J., & Giusti, M. M. (2011). High-purity isolation of anthocyanins mixtures from fruits and vegetables–A novel solid-phase extraction method using mixed mode cation-exchange chromatography. Journal of Chromatography A, 1218(44), 7914-7922.
  • Helrich, K. (1990). Official Methods of analysis of the Association of Official Analytical Chemisty.
  • Jiang, W., & Zhou, X. (2019). Hydrolysis of radish anthocyanins to enhance the antioxidant and antiproliferative capacities. Food Chemistry, 294, 477-485.
  • Jovanović, A. A., Đorđević, V. B., Zdunić, G. M., Pljevljakušić, D. S., Šavikin, K. P., Gođevac, D. M., & Bugarski, B. M. (2017). Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat-and ultrasound-assisted techniques. Separation and Purification Technology, 179, 369-380.
  • Kazeem, M., Adamson, J., & Ogunwande, I. (2013). Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed research international, 2013.
  • Kjeldahl, C. (1883). A new method for the determination of nitrogen in organic matter. Z Anal Chem, 22, 366.
  • Kulkarni, V. M., & Rathod, V. K. (2014). Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves. Ultrasonics sonochemistry, 21(2), 606-611.
  • Kumaran, A., & Karunakaran, R. J. (2006). Anti-oxidant activity of polyphenols from Phyllanthus debilis Klein ex Willd. Journal of Natural remedies, 6(2), 141-146.
  • Ma, Y., Yang, Y., Gao, J., Feng, J., Shang, Y., & Wei, Z. (2020). Phenolics and antioxidant activity of bamboo leaves soup as affected by in vitro digestion. Food and Chemical Toxicology, 135, 110941.
  • Mansour, M., Salah, M., & Xu, X. (2020). Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions. Ultrasonics sonochemistry, 63, 104927. Ojha, K. S., Aznar, R., O'Donnell, C., & Tiwari, B. K. (2020). Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC Trends in Analytical Chemistry, 122, 115663.
  • Pająk, P., Socha, R., Gałkowska, D., Rożnowski, J., & Fortuna, T. (2014). Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry, 143, 300-306.
  • Park, C. H., Baskar, T. B., Park, S. Y., Kim, S. J., Valan Arasu, M., Al-Dhabi, N. A., ... & Park, S. U. (2016). Metabolic profiling and antioxidant assay of metabolites from three radish cultivars (Raphanus sativus). Molecules, 21(2), 157.
  • Salah‐Abbès, J. B., Abbès, S., Houas, Z., Abdel‐Wahhab, M. A., & Oueslati, R. (2008). Zearalenone induces immunotoxicity in mice: possible protective effects of radish extract (Raphanus sativus). Journal of Pharmacy and Pharmacology, 60(6), 761-770.
  • Sarwari, G., Sultana, B., Sarfraz, R. A., & Zia, M. A. (2019). Cytotoxicity, antioxidant and antimutagenic potential evaluation of peels of edible roots and tubers. International Food Research Journal, 26(6).
  • Siewe, F. B., Kudre, T. G., & Narayan, B. (2020). Optimisation of ultrasound-assisted enzymatic extraction conditions of umami compounds from fish by-products using the combination of fractional factorial design and central composite design. Food Chemistry, 334, 127498.
  • Sukor, N., Jusoh, R., Kamarudin, N., Halim, N. A., Sulaiman, A., & Abdullah, S. (2020). Synergistic effect of probe sonication and ionic liquid for extraction of phenolic acids from oak galls. Ultrasonics sonochemistry, 62, 104876.
  • Świeca, M., Gawlik-Dziki, U., Dziki, D., Baraniak, B., & Czyż, J. (2013). The influence of protein–flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin. Food Chemistry, 141(1), 451-458.
  • Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599-606.
  • Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109.
  • Toor, R. K., & Savage, G. P. (2006). Effect of semi-drying on the antioxidant components of tomatoes. Food Chemistry, 94(1), 90-97.
  • Tomas, M., Zhang, L., Zengin, G., Rocchetti, G., Capanoglu, E., & Lucini, L. (2021). Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Food Research International, 140, 110039.
  • Torić, J., Brozovic, A., Baus Lončar, M., Jakobušić Brala, C., Karković Marković, A., Benčić, Đ., & Barbarić, M. (2020). Biological Activity of Phenolic Compounds in Extra Virgin Olive Oils through Their Phenolic Profile and Their Combination with Anticancer Drugs Observed in Human Cervical Carcinoma and Colon Adenocarcinoma Cells. Antioxidants, 9(5), 453.
  • Vinholes, J., Reis, S. F., Lemos, G., Barbieri, R. L., de Freitas, V., Franzon, R. C., & Vizzotto, M. (2018). Effect of in vitro digestion on the functional properties of Psidium cattleianum Sabine (araçá), Butia odorata (Barb. Rodr.) Noblick (butiá) and Eugenia uniflora L.(pitanga) fruit extracts. Food & function, 9(12), 6380-6390.
  • Xiao, Z., Rausch, S. R., Luo, Y., Sun, J., Yu, L., Wang, Q., ... & Stommel, J. R. (2019). Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT, 101, 731-737.
  • Yücetepe, A., Altin, G., & Özçelik, B. (2021). A novel antioxidant source: evaluation of in vitro bioaccessibility, antioxidant activity and polyphenol profile of phenolic extract from black radish peel wastes (Raphanus sativus L. var. niger) during simulated gastrointestinal digestion. International Journal of Food Science & Technology, 56(3), 1376-1384.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Aysun Yücetepe 0000-0002-3800-4774

Erken Görünüm Tarihi 29 Temmuz 2021
Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 27

Kaynak Göster

APA Yücetepe, A. (2021). Valorization of Peel Wastes of Purple Turnip (Brassica rapa L.): Extraction of Polyphenolics Through Ultrasonic-Assisted Extraction and Investigation of Changes in Total Phenolic Content, Total Monomeric Anthocyanin Content and Total Antioxidant Capacity During in vitro Gastro-Intestinal Digestion. Avrupa Bilim Ve Teknoloji Dergisi(27), 152-157. https://doi.org/10.31590/ejosat.949244