Araştırma Makalesi
BibTex RIS Kaynak Göster

Compact Embedding Theorems for The Space of Functions with Wavelet Transform in Amalgam Spaces

Yıl 2021, Sayı: 28, 568 - 572, 30.11.2021
https://doi.org/10.31590/ejosat.1009444

Öz

This paper is motivated to define the space 〖 A〗_s (W)_(ω,ϑ)^(p,q,r) (R) using the wavelet transform, and is also motivated to consider the inclusion and compact embedding theorems in this space.

Kaynakça

  • Daubechies, I. (1992). Ten Lectures on Wavelets, CBMS-NSF, SIAM, Philadelphia.
  • Feichtinger, H.G. (1980). Banach convolution algebras of Wiener type, In: Proc. Conf. Functions, Series, Operators, Budapest. Colloq. Math. Soc. Janos Bolyai, vol. 35, pp. 509-524.
  • Fischer, R.H. Gürkanlı, A.T. & Liu, T. S. (1996). On a family of weighted spaces, Math. Slovaca, 46, 1, 71-82.
  • Gasquet C. & Witomski, P. (1999). Fourier Analysis and Applications, Springer, New York.
  • Gröchenig, K. (2001). Foundations of Time-Frequency Analysis, Birkhauser, Boston
  • Gürkanlı, A.T. (2008). Compact embeddings of the spaces A_(w,ω)^p (R^d ), Taiwanese Journal of Mathematics, 12, 7, 1757-1767.
  • Heil, C. (2003). An introduction to weighted Wiener amalgams, In: Wavelets and Their Applications, pp. 183-216. Allied Publishers, New Delhi.
  • Kulak, Ö. & Gürkanlı, A.T. (2011). On function spaces with wavelet transform in L_ω^p (R^d×R^+ ), Hacettepe Journal of Mathematics and Statistics, 40, 2, 163 – 177.
  • Kulak Ö. & Gürkanlı, A.T. (2013). Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces, Journal of Inequalities and Applications, 2013:259.
  • Kulak Ö. & Gürkanlı, A.T. (2014). Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces, Journal of Inequalities and Applications, 2014:476
  • Mallat, S. (1998). A wavelet tour of signal processing, Academic Press, San Diego, CA.
  • Reiter, H. (1968). Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford.
  • Ünal C. & Aydın, İ. (2019). Compact embeddings on a subspace of weighted variable exponent Sobolev spaces, Advances in operator theory, 4, 2, 388-405.

Dalgacık Dönüşümleri Amalgam Uzaylarında Olan Fonksiyon Uzayları için Kompakt Gömülme Teoremleri

Yıl 2021, Sayı: 28, 568 - 572, 30.11.2021
https://doi.org/10.31590/ejosat.1009444

Öz

Bu çalışma dalgacık dönüşümü kullanarak 〖 A〗_s (W)_(ω,ϑ)^(p,q,r) (R) uzayını tanımlamak ve ayrıca bu uzayda kapsama, kompakt gömülme teoremlerini incelemek için motive edilmiştir.

Kaynakça

  • Daubechies, I. (1992). Ten Lectures on Wavelets, CBMS-NSF, SIAM, Philadelphia.
  • Feichtinger, H.G. (1980). Banach convolution algebras of Wiener type, In: Proc. Conf. Functions, Series, Operators, Budapest. Colloq. Math. Soc. Janos Bolyai, vol. 35, pp. 509-524.
  • Fischer, R.H. Gürkanlı, A.T. & Liu, T. S. (1996). On a family of weighted spaces, Math. Slovaca, 46, 1, 71-82.
  • Gasquet C. & Witomski, P. (1999). Fourier Analysis and Applications, Springer, New York.
  • Gröchenig, K. (2001). Foundations of Time-Frequency Analysis, Birkhauser, Boston
  • Gürkanlı, A.T. (2008). Compact embeddings of the spaces A_(w,ω)^p (R^d ), Taiwanese Journal of Mathematics, 12, 7, 1757-1767.
  • Heil, C. (2003). An introduction to weighted Wiener amalgams, In: Wavelets and Their Applications, pp. 183-216. Allied Publishers, New Delhi.
  • Kulak, Ö. & Gürkanlı, A.T. (2011). On function spaces with wavelet transform in L_ω^p (R^d×R^+ ), Hacettepe Journal of Mathematics and Statistics, 40, 2, 163 – 177.
  • Kulak Ö. & Gürkanlı, A.T. (2013). Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces, Journal of Inequalities and Applications, 2013:259.
  • Kulak Ö. & Gürkanlı, A.T. (2014). Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces, Journal of Inequalities and Applications, 2014:476
  • Mallat, S. (1998). A wavelet tour of signal processing, Academic Press, San Diego, CA.
  • Reiter, H. (1968). Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford.
  • Ünal C. & Aydın, İ. (2019). Compact embeddings on a subspace of weighted variable exponent Sobolev spaces, Advances in operator theory, 4, 2, 388-405.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Öznur Kulak 0000-0003-1433-3159

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Kulak, Ö. (2021). Compact Embedding Theorems for The Space of Functions with Wavelet Transform in Amalgam Spaces. Avrupa Bilim Ve Teknoloji Dergisi(28), 568-572. https://doi.org/10.31590/ejosat.1009444