Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 57 Sayı: 2, 68 - 74, 31.05.2023
https://doi.org/10.26650/eor.2023984422

Öz

Destekleyen Kurum

none

Proje Numarası

none

Teşekkür

Yeliz Kaşko Arıcı

Kaynakça

  • Reference1: Güngör E, Yildirim D, Çevik R. Evaluation of osteoporosis in jaw bones using cone beam CT and dual-energy X-ray absorptiometry. Journal of oral science. 2016;58(2):185-94.
  • Reference2: Tolga Suer B, Yaman Z, Buyuksarac B. Correlation of Fractal Dimension Values with Implant Insertion Torque and Resonance Frequency Values at Implant Recipient Sites. International Journal of Oral & Maxillofacial Implants. 2016;31(1).
  • Reference3:Geraets W, Van Der Stelt P. Fractal properties of bone. Dentomaxillofacial Radiology. 2000;29(3):144-53.
  • Reference4: Kato CN, Barra SG, Tavares NP, Amaral TM, Brasileiro CB, Mesquita RA, et al. Use of fractal analysis in dental images: a systematic review. Dentomaxillofacial Radiology. 2020;49(2):20180457.
  • Reference5: White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 1999;88(5):628-35.
  • Reference6: Bechara B, McMahan CA, Moore WS, Noujeim M, Geha H, Teixeira FB. Contrast-to-noise ratio difference in small field of view cone beam computed tomography machines. Journal of oral science. 2012;54(3):227-32.
  • Reference7: Ibrahim N, Parsa A, Hassan B, van der Stelt P, Aartman IH, Wismeijer D. The effect of scan parameters on cone beam CT trabecular bone microstructural measurements of the human mandible. Dentomaxillofacial Radiology. 2013;42(10):20130206.
  • Reference8: Jolley L, Majumdar S, Kapila S. Technical factors in fractal analysis of periapical radiographs. Dentomaxillofacial Radiology. 2006;35(6):393-7.
  • Reference9: Wilding R, Slabbert J, Kathree H, Owen C, Crombie K, Delport P. The use of fractal analysis to reveal remodelling in human alveolar bone following the placement of dental implants. Archives of Oral Biology. 1995;40(1):61-72.
  • Reference10: Shrout MK, Roberson B, Potter BJ, Mailhot JM, Hildebolt CF. A comparison of 2 patient populations using fractal analysis. Journal of periodontology. 1998;69(1):9-13.
  • Reference11: Shrout M, Hildebolt C, Potter B. The effect of varying the region of interest on calculations of fractal index. Dentomaxillofacial Radiology. 1997;26(5):295-8.
  • Reference12: Baksi BG, Fidler A. Image resolution and exposure time of digital radiographs affects fractal dimension of periapical bone. Clinical oral investigations. 2012;16(5):1507-10.
  • Reference13: Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S. Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofacial Radiology. 2015;44(8):20150078.
  • Reference14: Varma DR. Managing DICOM images: Tips and tricks for the radiologist. The Indian journal of radiology & imaging. 2012;22(1):4.
  • Reference15: Tan LK. Image file formats. Biomed Imaging Interv J. 2006;2(1):e6.
  • Reference16: Viswanathan GK, Lotus R. Comparison and analysis of Image File Formats.
  • Reference17: Toghyani S, Nasseh I, Aoun G, Noujeim M. Effect of image resolution and compression on fractal analysis of the periapical bone. Acta Informatica Medica. 2019;27(3):167.
  • Reference18: Shrout MK, Potter BJ, Hildebolt CF. The effect of image variations on fractal dimension calculations. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 1997;84(1):96-100.
  • Reference19: Baksi BG, Fidler A. Fractal analysis of periapical bone from lossy compressed radiographs: a comparison of two lossy compression methods. Journal of digital imaging. 2011;24(6):993-8.
  • Reference20: Yasar F, Apaydın B, Yılmaz H-H. The effects of image compression on quantitative measurements of digital panoramic radiographs. Medicina oral, patologia oral y cirugia bucal. 2012;17(6):e1074.
  • Reference21: Veenland J, Grashuis J, Gelsema E. Texture analysis in radiographs: the influence of modulation transfer function and noise on the discriminative ability of texture features. Medical Physics. 1998;25(6):922-36.
  • Reference22: Attaelmanan AG, Borg E, Gröndahl H-G. Signal-to-noise ratios of 6 intraoral digital sensors. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2001;91(5):611-5.
  • Reference23: Kocasarac HD, Kursun-Cakmak ES, Ustaoglu G, Bayrak S, Orhan K, Noujeim M. Assessment of signal-to-noise ratio and contrast-to-noise ratio in 3 T magnetic resonance imaging in the presence of zirconium, titanium, and titanium-zirconium alloy implants. Oral surgery, oral medicine, oral pathology and oral radiology. 2020;129(1):80-6.
  • Reference24: Bollen A, Taguchi A, Hujoel P, Hollender L. Fractal dimension on dental radiographs. Dentomaxillofacial Radiology. 2001;30(5):270-5.
  • Reference25: Tsai M-T, He R-T, Huang H-L, Tu M-G, Hsu J-T. Effect of Scanning Resolution on the Prediction of Trabecular Bone Microarchitectures Using Dental Cone Beam Computed Tomography. Diagnostics. 2020;10(6):368.
  • Reference26: dos Santos Corpas L, Jacobs R, Quirynen M, Huang Y, Naert I, Duyck J. Peri‐implant bone tissue assessment by comparing the outcome of intra‐oral radiograph and cone beam computed tomography analyses to the histological standard. Clinical oral implants research. 2011;22(5):492-9.
  • Reference27: Parsa A, Ibrahim N, Hassan B, Motroni A, Van der Stelt P, Wismeijer D. Influence of cone beam CT scanning parameters on grey value measurements at an implant site. Dentomaxillofacial Radiology. 2013;42(3):79884780.
  • Reference28: Neves FS, Freitas DQ, Campos PSF, Ekestubbe A, Lofthag-Hansen S. Evaluation of cone-beam computed tomography in the diagnosis of vertical root fractures: the influence of imaging modes and root canal materials. Journal of endodontics. 2014;40(10):1530-6.
  • Reference29: Schulze R, Heil U, Groβ D, Bruellmann D, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofacial Radiology. 2011;40(5):265-73.
  • Reference30: Schulze R. Spatial resolution in CBCT machines for dental/maxillofacial applications—what do we know today? 2015.
  • Reference31: Flaherty T, Tamaddon M, Liu C. Micro-Computed Tomography Analysis of Subchondral Bone Regeneration Using Osteochondral Scaffolds in an Ovine Condyle Model. Applied Sciences. 2021;11(3):891.
  • Reference32: Min C-K, Kim K-A. Quantitative analysis of metal artefacts of dental implant in CBCT image by correlation analysis to micro-CT: A microstructural study. Dentomaxillofacial Radiology. 2021;50(3):20200365.

The effects of technical factors on the fractal dimension in different dental radiographic images

Yıl 2023, Cilt: 57 Sayı: 2, 68 - 74, 31.05.2023
https://doi.org/10.26650/eor.2023984422

Öz

Purpose

The aim of this study was to assess the impact of exposure parameters and image formats on fractal dimension (FD) values in periapical, panoramic, and CBCT images.

Materials and Methods

Seven dry male mandibles were selected, and a Gutta-Percha was used to identify identical regions of interest. A periapical radiograph was taken with 60 kVp/7 mA and exported in DICOM, JPEG, TIFF, and PNG formats. Nine periapical radiographs (60, 65, 70 kVp; 4, 5, 6 mA) were taken from seven dry human mandibles. Additionally, 12 panoramic radiographs (60, 70, 81, 90 kVp; 5, 8, 13 mA) and 10 CBCT images (with different scanning options and FOVs) were taken from each mandible. FDs were measured from a standard area.

Results

The intra-class correlation coefficient demonstrated a high degree of agreement between observers. No significant difference was found between TIFF and PNG formats (p > 0.05). The highest FD mean was found in TIFF format, while the lowest FD mean was found in JPEG format (p < 0.001). There was no significant difference between kVp and mA settings in periapical images. In panoramic images, a significant difference was found at 90 kVp (p = 0.001) and 13 mA (p < 0.001), with lower FD values observed at these settings. There was no significant difference between FOV and resolution in CBCT images (p > 0.05).

Conclusion

The format of the image can influence FD. For periapical and panoramic radiographs, kVp and mA settings do not have a significant impact on FD. However, fractal analysis may not be an ideal method for evaluating three-dimensional images, such as those obtained with CBCT.

Proje Numarası

none

Kaynakça

  • Reference1: Güngör E, Yildirim D, Çevik R. Evaluation of osteoporosis in jaw bones using cone beam CT and dual-energy X-ray absorptiometry. Journal of oral science. 2016;58(2):185-94.
  • Reference2: Tolga Suer B, Yaman Z, Buyuksarac B. Correlation of Fractal Dimension Values with Implant Insertion Torque and Resonance Frequency Values at Implant Recipient Sites. International Journal of Oral & Maxillofacial Implants. 2016;31(1).
  • Reference3:Geraets W, Van Der Stelt P. Fractal properties of bone. Dentomaxillofacial Radiology. 2000;29(3):144-53.
  • Reference4: Kato CN, Barra SG, Tavares NP, Amaral TM, Brasileiro CB, Mesquita RA, et al. Use of fractal analysis in dental images: a systematic review. Dentomaxillofacial Radiology. 2020;49(2):20180457.
  • Reference5: White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 1999;88(5):628-35.
  • Reference6: Bechara B, McMahan CA, Moore WS, Noujeim M, Geha H, Teixeira FB. Contrast-to-noise ratio difference in small field of view cone beam computed tomography machines. Journal of oral science. 2012;54(3):227-32.
  • Reference7: Ibrahim N, Parsa A, Hassan B, van der Stelt P, Aartman IH, Wismeijer D. The effect of scan parameters on cone beam CT trabecular bone microstructural measurements of the human mandible. Dentomaxillofacial Radiology. 2013;42(10):20130206.
  • Reference8: Jolley L, Majumdar S, Kapila S. Technical factors in fractal analysis of periapical radiographs. Dentomaxillofacial Radiology. 2006;35(6):393-7.
  • Reference9: Wilding R, Slabbert J, Kathree H, Owen C, Crombie K, Delport P. The use of fractal analysis to reveal remodelling in human alveolar bone following the placement of dental implants. Archives of Oral Biology. 1995;40(1):61-72.
  • Reference10: Shrout MK, Roberson B, Potter BJ, Mailhot JM, Hildebolt CF. A comparison of 2 patient populations using fractal analysis. Journal of periodontology. 1998;69(1):9-13.
  • Reference11: Shrout M, Hildebolt C, Potter B. The effect of varying the region of interest on calculations of fractal index. Dentomaxillofacial Radiology. 1997;26(5):295-8.
  • Reference12: Baksi BG, Fidler A. Image resolution and exposure time of digital radiographs affects fractal dimension of periapical bone. Clinical oral investigations. 2012;16(5):1507-10.
  • Reference13: Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S. Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofacial Radiology. 2015;44(8):20150078.
  • Reference14: Varma DR. Managing DICOM images: Tips and tricks for the radiologist. The Indian journal of radiology & imaging. 2012;22(1):4.
  • Reference15: Tan LK. Image file formats. Biomed Imaging Interv J. 2006;2(1):e6.
  • Reference16: Viswanathan GK, Lotus R. Comparison and analysis of Image File Formats.
  • Reference17: Toghyani S, Nasseh I, Aoun G, Noujeim M. Effect of image resolution and compression on fractal analysis of the periapical bone. Acta Informatica Medica. 2019;27(3):167.
  • Reference18: Shrout MK, Potter BJ, Hildebolt CF. The effect of image variations on fractal dimension calculations. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 1997;84(1):96-100.
  • Reference19: Baksi BG, Fidler A. Fractal analysis of periapical bone from lossy compressed radiographs: a comparison of two lossy compression methods. Journal of digital imaging. 2011;24(6):993-8.
  • Reference20: Yasar F, Apaydın B, Yılmaz H-H. The effects of image compression on quantitative measurements of digital panoramic radiographs. Medicina oral, patologia oral y cirugia bucal. 2012;17(6):e1074.
  • Reference21: Veenland J, Grashuis J, Gelsema E. Texture analysis in radiographs: the influence of modulation transfer function and noise on the discriminative ability of texture features. Medical Physics. 1998;25(6):922-36.
  • Reference22: Attaelmanan AG, Borg E, Gröndahl H-G. Signal-to-noise ratios of 6 intraoral digital sensors. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2001;91(5):611-5.
  • Reference23: Kocasarac HD, Kursun-Cakmak ES, Ustaoglu G, Bayrak S, Orhan K, Noujeim M. Assessment of signal-to-noise ratio and contrast-to-noise ratio in 3 T magnetic resonance imaging in the presence of zirconium, titanium, and titanium-zirconium alloy implants. Oral surgery, oral medicine, oral pathology and oral radiology. 2020;129(1):80-6.
  • Reference24: Bollen A, Taguchi A, Hujoel P, Hollender L. Fractal dimension on dental radiographs. Dentomaxillofacial Radiology. 2001;30(5):270-5.
  • Reference25: Tsai M-T, He R-T, Huang H-L, Tu M-G, Hsu J-T. Effect of Scanning Resolution on the Prediction of Trabecular Bone Microarchitectures Using Dental Cone Beam Computed Tomography. Diagnostics. 2020;10(6):368.
  • Reference26: dos Santos Corpas L, Jacobs R, Quirynen M, Huang Y, Naert I, Duyck J. Peri‐implant bone tissue assessment by comparing the outcome of intra‐oral radiograph and cone beam computed tomography analyses to the histological standard. Clinical oral implants research. 2011;22(5):492-9.
  • Reference27: Parsa A, Ibrahim N, Hassan B, Motroni A, Van der Stelt P, Wismeijer D. Influence of cone beam CT scanning parameters on grey value measurements at an implant site. Dentomaxillofacial Radiology. 2013;42(3):79884780.
  • Reference28: Neves FS, Freitas DQ, Campos PSF, Ekestubbe A, Lofthag-Hansen S. Evaluation of cone-beam computed tomography in the diagnosis of vertical root fractures: the influence of imaging modes and root canal materials. Journal of endodontics. 2014;40(10):1530-6.
  • Reference29: Schulze R, Heil U, Groβ D, Bruellmann D, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofacial Radiology. 2011;40(5):265-73.
  • Reference30: Schulze R. Spatial resolution in CBCT machines for dental/maxillofacial applications—what do we know today? 2015.
  • Reference31: Flaherty T, Tamaddon M, Liu C. Micro-Computed Tomography Analysis of Subchondral Bone Regeneration Using Osteochondral Scaffolds in an Ovine Condyle Model. Applied Sciences. 2021;11(3):891.
  • Reference32: Min C-K, Kim K-A. Quantitative analysis of metal artefacts of dental implant in CBCT image by correlation analysis to micro-CT: A microstructural study. Dentomaxillofacial Radiology. 2021;50(3):20200365.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diş Hekimliği
Bölüm Araştırmalar
Yazarlar

Mehmet Amuk 0000-0001-6390-7169

Gamze Şirin Sarıbal 0000-0002-5191-377X

Nihal Ersu 0000-0002-1356-9971

Serkan Yılmaz Bu kişi benim 0000-0001-7149-0324

Proje Numarası none
Yayımlanma Tarihi 31 Mayıs 2023
Gönderilme Tarihi 18 Ağustos 2021
Yayımlandığı Sayı Yıl 2023 Cilt: 57 Sayı: 2

Kaynak Göster

EndNote Amuk M, Şirin Sarıbal G, Ersu N, Yılmaz S (01 Mayıs 2023) The effects of technical factors on the fractal dimension in different dental radiographic images. European Oral Research 57 2 68–74.