Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Hacimlerdeki Uçucu Külün Isı İle Kürlenen Hava Sürükleyici Katkılı Çimento Harçlarına Etkisi

Yıl 2022, Cilt: 38 Sayı: 2, 280 - 291, 23.08.2022

Öz

Uçucu külün doğası karbon kalıntısı içermektedir ve yüzey aktif maddeler ile karbon kalıntısı arasındaki etkileşim çimento esaslı malzemelerin performansı için sorun teşkil etmektedir. Buna ek olarak, beton gibi malzemelerin ısı ile kür edilmesi bu tip mikro yapısal bozulmayı daha açık hale getirebilir. Bu konuyu daha fazla detaylandırmak üzere, hava sürükleyici katkı maddesinin, farklı hacimlerde uçucu kül içeren ısı kürü ile kür edilmiş çimento harçları üzerindeki etkisi deneysel bir çalışma ile incelenmiştir. Uçucu kül içeren hava sürükleyici katkılı çimento harçlarının mekanik özellikleri farklı yaşlarda değerlendirilmiştir. Karşılaştırmalı araştırma ayrıca mikro yapısal analizlerle de gerçekleştirilmiştir. Karbon esaslı malzemelerin ve hava sürükleyici katkı maddesinin etkileşimi mekanik ve mikro yapısal bulgular dikkate alınarak ayrıntılı olarak tartışılmıştır. Sonuçlar, hava sürükleyici katkı maddesi ile toplam bağlayıcı malzeme ağırlığınca %25 uçucu kül kullanılmasının, hava sürükleyici katkı içermeyen ısı ile kür edilmiş çimento harçlarına kıyasla olumlu olduğunu göstermektedir. Ancak ısı ile kür edilmiş ve hava sürükleyici katkı maddesi içeren çimento esaslı harçlarda uçucu külün %55’ten fazla kullanımı ise tavsiye edilmemektedir.

Kaynakça

  • 1. Chousidis N., RakantaaI E., Batisa J.G. Mechanical properties and durability performance of reinforced concrete containing fly ash. Construction and Building Materials 101:1, 810-817, 2015.
  • 2. Saha A.K. Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research 28 1: 25-31, 2018a.
  • 3. Nagrockienė D., Daugėla A Investigation into the properties of concrete modified with biomass combustion fly ash. Construction and Building Materials 174: 369-375, 2018.
  • 4. Nie Q., Zhou C., Li H., Shu X., Gong H., Huang B. Numerical simulation of fly ash concrete under sulfate attack. Construction and Building Materials 84:1, 261-268, 2015.
  • 5. Saha A.K., Khan M.N.N., Sarker P.K., Shaikh F.A., Pramanik A. The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review. Construction and Building Materials 171, 743-758, 2018b.
  • 6. Lopez-Calvoa, H.Z., Montes-Garcíab P., Jiménez-Quero V.G., Gómez-Barranco H., Bremner, T.W., Thomas M.D.AInfluence of crack width, cover depth and concrete quality on corrosion of steel in HPC containing corrosion inhibiting admixtures and fly ash. Cement and Concrete Composites 88: 200-210, 2018.
  • 7. Folliard K., Hover K., Harris N., Tyler Ley M., Naranjo A. Effects of Texas Fly Ash on Air-Entrainment in Concrete: Comprehensive Report. Center for Transportation Research. The University of Texas, USA, Report FHWA/TX-08/0-5207-1, 2009.
  • 8. Pedersen K.H., Jensen A.D., Skjøth-Rasmussen M.S., Dam-Johansen K. A review of the interference of carbon containing fly ash with air entrainment in concrete. Progress in Energy and Combustion Science 34 2: 135-154, 2008.
  • 9. Pedersen K.H., Jensen A.D., Dam-Johansen K. The effect of low-NOx combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete. Combustion and Flame 157 2: 208-216, 2010.
  • 10. Dąbrowski M., Glinicki M.A., Gibas K., Jóźwiak-Niedźwiedzka D. Effects of calcareous fly ash in blended cements on chloride ions migration and strength of air entrained concrete. Construction and Building Materials 126: 1044-1053, 2016.
  • 11. Du L., Folliard K. Mechanisms of air entrainment in concrete. Cement and Concrete Research 35, 8: 1463-1471, 2005.
  • 12. Hill R.L., Sarkar S.L., Rathbone R.F., Hower J.C. An examination of fly ash carbon and its interactions with air entraining agent. Cement and Concrete Research 27, 2: 193-204, 1997.
  • 13. Jolicoeur C., To T.C., Nguyen T.S., Zhang Z., Hill R., Page M. Sacrificial Admixtures for air entrainment in fly ash concrete, In proceeding of a conference on fly ash, silica fume, slag, and natural pozzolans in concrete and 9th International conference on recent advances in concrete Technology (V.M. Malhotra. (ed)), Warsaw, Poland, 299-318, 2007.
  • 14. Chari M.N., Shekarchi M., Sobhani J., Chari M.N. The effect of temperature on the moisture transfer coefficient of cement-based mortars: An experimental investigation. Construction and Building Materials 102 1: 306-317, 2016.
  • 15. Guelmine L. Hadjab H., Benazzouk A. Effect of elevated temperatures on physical and mechanical properties of recycled rubber mortar. Construction and Building Materials 126, 77-85, 2016.
  • 16. Farzadnia N., Ali A.A.A., Demirboga R. Characterization of high strength mortars with nano alumina at elevated temperatures. Cement and Concrete Research 54: 43-54. 2013.
  • 17. Kjellsen K.O., Detwiller R.J., Gjorv O.E. Development of microstructures in plain cement pastes hydrated at different temperatures. Cement and Concrete Research 21:1, 179-189, 1991.
  • 18. Yang R., Lawrence C.D., Lynsdale C.J., Sharp J.H. Delayed ettringite formation in heat-cured Portland cement mortars. Cement and Concrete. Research 29 : 1, 17-25, 1999.
  • 19. Barbarulo R., Peycelon H., Prené S., Marchand J. Delayed ettringite formation symptoms on mortars induced by high temperature due to cement heat hydration or late thermal cycle. Cement and Concrete Research 35:1, 125-131, 2005.
  • 20. TS EN 934-2, Admixtures for concrete, mortar, and grout-Part 2: Concrete admixtures-Definitions, requirements, conformity, marking and labeling, Ankara, Turkey, 2011.
  • 21. TS EN 1015-11, Methods of Test for Mortar for Masonry – Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar Turkish Standards Institution. Ankara, Turkey, 2000.
  • 22. Baccelle, L.S., Bosellini A. Diagrammi per la stima visiva della composizione percentuale nelle rocce sedimentarie: Annali dell'Università di Ferrara, Bologna, Italy, 1965.
  • 23. Baert G., Hoste S., De Schutter G., De Belie N. Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry. Journal of Thermal Analysis and Calorimetry 94, 2 485–492, 2008.
  • 24. Ballester P., Hidalgo A., Mármol A., Morales J., Sánchez L. Effect of brief heat-curing on microstructure and mechanical properties in fresh cement based mortars. Cement and Concrete Research 39 7, 573-579, 2009.
  • 25. Mehta P.K., Monteiro P.J.M. Concrete, microstructure, properties and materials, McGraw-Hill Education, USA, 2006.
  • 26. Puthipad N., Ouchi M. Effects of fly ash, mixing procedure and type of air-entraining agent on coalescence of entrained air bubbles in mortar of self-compacting concrete at fresh state. Construction and Building Materials 180: 437-444, 2018.
  • 27. Lam L., Wong Y.L., Poon C.S. Effect of fly ash and silica fume on compressive and fracture behaviors of concrete. Cement and Concrete Research, 28: 271-283, 1998.
  • 28. Lam L., Wong Y.L., Poon C.S. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems Cement and Concrete Research 30: 747-756, 2000.
  • 29. Marios S., Alexandros H., Kanavaris F., Kwasny J. Effect of temperature on the strength development of mortar mixes with GGBS and fly ash Magazine of Concrete Research 69:15, 787-801, 2017.
  • 30. Ba, M. Effects of steam curing on strength and porous structure of concrete with low water/binder ratio. Construction and Building Materials, 25, 1: 123–128, 2011.
  • 31. Mohebbi M., Rajabipour F., Scheetz B.E. Evaluation of Two-Atmosphere Thermogravimetric Analysis for Determining the Unburned Carbon Content in Fly Ash. Advances in Civil Engineering Materials 6 1: 258-279, 2017.
  • 32. Payá J., Monzó J., Borrachero M.V., Perris E., Amahjour F. Thermogravimetric Methods for Determining Carbon Content in Fly Ashes. Cement and Concrete Research 28, 5: 675-686, 1998.
  • 33. Yu J., Kulaots I., Sabanegh N., Gao Y., Hurt R.H., Suuberg E.S., Mehta A. Adsorptive and Optical Properties of Fly Ash from Coal and Petroleum Coke Co-firing, Energy and Fuels 14: 591-596, 2000.
  • 34. Fan M., Brown R.C. Comparison of the loss-on-Ignition and thermogravimetric analysis techniques in measuring unburned carbon in coal fly ash, energy fuels, 15: 6, 1414–1417. 2001.
  • 35. Deboucha W., Leklou N., Khelidj A., Oudjit M.N. Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration. Construction and Building Materials, 146 687-701, 2017.
  • 36. De Weerdt K., Ben Haha M., Le Saout G., Kjellsen K.O., Justnes H., Lothenbach B., Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research 41, 3: 279-291, 2011.
Yıl 2022, Cilt: 38 Sayı: 2, 280 - 291, 23.08.2022

Öz

Kaynakça

  • 1. Chousidis N., RakantaaI E., Batisa J.G. Mechanical properties and durability performance of reinforced concrete containing fly ash. Construction and Building Materials 101:1, 810-817, 2015.
  • 2. Saha A.K. Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research 28 1: 25-31, 2018a.
  • 3. Nagrockienė D., Daugėla A Investigation into the properties of concrete modified with biomass combustion fly ash. Construction and Building Materials 174: 369-375, 2018.
  • 4. Nie Q., Zhou C., Li H., Shu X., Gong H., Huang B. Numerical simulation of fly ash concrete under sulfate attack. Construction and Building Materials 84:1, 261-268, 2015.
  • 5. Saha A.K., Khan M.N.N., Sarker P.K., Shaikh F.A., Pramanik A. The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review. Construction and Building Materials 171, 743-758, 2018b.
  • 6. Lopez-Calvoa, H.Z., Montes-Garcíab P., Jiménez-Quero V.G., Gómez-Barranco H., Bremner, T.W., Thomas M.D.AInfluence of crack width, cover depth and concrete quality on corrosion of steel in HPC containing corrosion inhibiting admixtures and fly ash. Cement and Concrete Composites 88: 200-210, 2018.
  • 7. Folliard K., Hover K., Harris N., Tyler Ley M., Naranjo A. Effects of Texas Fly Ash on Air-Entrainment in Concrete: Comprehensive Report. Center for Transportation Research. The University of Texas, USA, Report FHWA/TX-08/0-5207-1, 2009.
  • 8. Pedersen K.H., Jensen A.D., Skjøth-Rasmussen M.S., Dam-Johansen K. A review of the interference of carbon containing fly ash with air entrainment in concrete. Progress in Energy and Combustion Science 34 2: 135-154, 2008.
  • 9. Pedersen K.H., Jensen A.D., Dam-Johansen K. The effect of low-NOx combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete. Combustion and Flame 157 2: 208-216, 2010.
  • 10. Dąbrowski M., Glinicki M.A., Gibas K., Jóźwiak-Niedźwiedzka D. Effects of calcareous fly ash in blended cements on chloride ions migration and strength of air entrained concrete. Construction and Building Materials 126: 1044-1053, 2016.
  • 11. Du L., Folliard K. Mechanisms of air entrainment in concrete. Cement and Concrete Research 35, 8: 1463-1471, 2005.
  • 12. Hill R.L., Sarkar S.L., Rathbone R.F., Hower J.C. An examination of fly ash carbon and its interactions with air entraining agent. Cement and Concrete Research 27, 2: 193-204, 1997.
  • 13. Jolicoeur C., To T.C., Nguyen T.S., Zhang Z., Hill R., Page M. Sacrificial Admixtures for air entrainment in fly ash concrete, In proceeding of a conference on fly ash, silica fume, slag, and natural pozzolans in concrete and 9th International conference on recent advances in concrete Technology (V.M. Malhotra. (ed)), Warsaw, Poland, 299-318, 2007.
  • 14. Chari M.N., Shekarchi M., Sobhani J., Chari M.N. The effect of temperature on the moisture transfer coefficient of cement-based mortars: An experimental investigation. Construction and Building Materials 102 1: 306-317, 2016.
  • 15. Guelmine L. Hadjab H., Benazzouk A. Effect of elevated temperatures on physical and mechanical properties of recycled rubber mortar. Construction and Building Materials 126, 77-85, 2016.
  • 16. Farzadnia N., Ali A.A.A., Demirboga R. Characterization of high strength mortars with nano alumina at elevated temperatures. Cement and Concrete Research 54: 43-54. 2013.
  • 17. Kjellsen K.O., Detwiller R.J., Gjorv O.E. Development of microstructures in plain cement pastes hydrated at different temperatures. Cement and Concrete Research 21:1, 179-189, 1991.
  • 18. Yang R., Lawrence C.D., Lynsdale C.J., Sharp J.H. Delayed ettringite formation in heat-cured Portland cement mortars. Cement and Concrete. Research 29 : 1, 17-25, 1999.
  • 19. Barbarulo R., Peycelon H., Prené S., Marchand J. Delayed ettringite formation symptoms on mortars induced by high temperature due to cement heat hydration or late thermal cycle. Cement and Concrete Research 35:1, 125-131, 2005.
  • 20. TS EN 934-2, Admixtures for concrete, mortar, and grout-Part 2: Concrete admixtures-Definitions, requirements, conformity, marking and labeling, Ankara, Turkey, 2011.
  • 21. TS EN 1015-11, Methods of Test for Mortar for Masonry – Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar Turkish Standards Institution. Ankara, Turkey, 2000.
  • 22. Baccelle, L.S., Bosellini A. Diagrammi per la stima visiva della composizione percentuale nelle rocce sedimentarie: Annali dell'Università di Ferrara, Bologna, Italy, 1965.
  • 23. Baert G., Hoste S., De Schutter G., De Belie N. Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry. Journal of Thermal Analysis and Calorimetry 94, 2 485–492, 2008.
  • 24. Ballester P., Hidalgo A., Mármol A., Morales J., Sánchez L. Effect of brief heat-curing on microstructure and mechanical properties in fresh cement based mortars. Cement and Concrete Research 39 7, 573-579, 2009.
  • 25. Mehta P.K., Monteiro P.J.M. Concrete, microstructure, properties and materials, McGraw-Hill Education, USA, 2006.
  • 26. Puthipad N., Ouchi M. Effects of fly ash, mixing procedure and type of air-entraining agent on coalescence of entrained air bubbles in mortar of self-compacting concrete at fresh state. Construction and Building Materials 180: 437-444, 2018.
  • 27. Lam L., Wong Y.L., Poon C.S. Effect of fly ash and silica fume on compressive and fracture behaviors of concrete. Cement and Concrete Research, 28: 271-283, 1998.
  • 28. Lam L., Wong Y.L., Poon C.S. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems Cement and Concrete Research 30: 747-756, 2000.
  • 29. Marios S., Alexandros H., Kanavaris F., Kwasny J. Effect of temperature on the strength development of mortar mixes with GGBS and fly ash Magazine of Concrete Research 69:15, 787-801, 2017.
  • 30. Ba, M. Effects of steam curing on strength and porous structure of concrete with low water/binder ratio. Construction and Building Materials, 25, 1: 123–128, 2011.
  • 31. Mohebbi M., Rajabipour F., Scheetz B.E. Evaluation of Two-Atmosphere Thermogravimetric Analysis for Determining the Unburned Carbon Content in Fly Ash. Advances in Civil Engineering Materials 6 1: 258-279, 2017.
  • 32. Payá J., Monzó J., Borrachero M.V., Perris E., Amahjour F. Thermogravimetric Methods for Determining Carbon Content in Fly Ashes. Cement and Concrete Research 28, 5: 675-686, 1998.
  • 33. Yu J., Kulaots I., Sabanegh N., Gao Y., Hurt R.H., Suuberg E.S., Mehta A. Adsorptive and Optical Properties of Fly Ash from Coal and Petroleum Coke Co-firing, Energy and Fuels 14: 591-596, 2000.
  • 34. Fan M., Brown R.C. Comparison of the loss-on-Ignition and thermogravimetric analysis techniques in measuring unburned carbon in coal fly ash, energy fuels, 15: 6, 1414–1417. 2001.
  • 35. Deboucha W., Leklou N., Khelidj A., Oudjit M.N. Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration. Construction and Building Materials, 146 687-701, 2017.
  • 36. De Weerdt K., Ben Haha M., Le Saout G., Kjellsen K.O., Justnes H., Lothenbach B., Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research 41, 3: 279-291, 2011.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Omeed Adwal Ali Ali 0000-0001-7535-7862

Oğuzhan Öztürk 0000-0003-3085-4528

Ülkü Sultan Keskin 0000-0002-9517-9116

Cengiz Atiş 0000-0003-3459-329X

Erken Görünüm Tarihi 23 Ağustos 2022
Yayımlanma Tarihi 23 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 38 Sayı: 2

Kaynak Göster

APA Ali, O. A. A., Öztürk, O., Keskin, Ü. S., Atiş, C. (2022). Farklı Hacimlerdeki Uçucu Külün Isı İle Kürlenen Hava Sürükleyici Katkılı Çimento Harçlarına Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 38(2), 280-291.
AMA Ali OAA, Öztürk O, Keskin ÜS, Atiş C. Farklı Hacimlerdeki Uçucu Külün Isı İle Kürlenen Hava Sürükleyici Katkılı Çimento Harçlarına Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Ağustos 2022;38(2):280-291.
Chicago Ali, Omeed Adwal Ali, Oğuzhan Öztürk, Ülkü Sultan Keskin, ve Cengiz Atiş. “Farklı Hacimlerdeki Uçucu Külün Isı İle Kürlenen Hava Sürükleyici Katkılı Çimento Harçlarına Etkisi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38, sy. 2 (Ağustos 2022): 280-91.
EndNote Ali OAA, Öztürk O, Keskin ÜS, Atiş C (01 Ağustos 2022) Farklı Hacimlerdeki Uçucu Külün Isı İle Kürlenen Hava Sürükleyici Katkılı Çimento Harçlarına Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38 2 280–291.
IEEE O. A. A. Ali, O. Öztürk, Ü. S. Keskin, ve C. Atiş, “Farklı Hacimlerdeki Uçucu Külün Isı İle Kürlenen Hava Sürükleyici Katkılı Çimento Harçlarına Etkisi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 38, sy. 2, ss. 280–291, 2022.
ISNAD Ali, Omeed Adwal Ali vd. “Farklı Hacimlerdeki Uçucu Külün Isı İle Kürlenen Hava Sürükleyici Katkılı Çimento Harçlarına Etkisi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38/2 (Ağustos 2022), 280-291.
JAMA Ali OAA, Öztürk O, Keskin ÜS, Atiş C. Farklı Hacimlerdeki Uçucu Külün Isı İle Kürlenen Hava Sürükleyici Katkılı Çimento Harçlarına Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2022;38:280–291.
MLA Ali, Omeed Adwal Ali vd. “Farklı Hacimlerdeki Uçucu Külün Isı İle Kürlenen Hava Sürükleyici Katkılı Çimento Harçlarına Etkisi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 38, sy. 2, 2022, ss. 280-91.
Vancouver Ali OAA, Öztürk O, Keskin ÜS, Atiş C. Farklı Hacimlerdeki Uçucu Külün Isı İle Kürlenen Hava Sürükleyici Katkılı Çimento Harçlarına Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2022;38(2):280-91.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.