Araştırma Makalesi
BibTex RIS Kaynak Göster

Motor Öğrenme Süreçlerinin Jebsen-Taylor El Fonksiyon Testi ile Değerlendirilmesi

Yıl 2025, Cilt: 13 Sayı: 1, 75 - 82, 02.01.2025

Öz

Amaç: Çalışmamızın birincil amacı yetişkinlerde kısa bir zaman aralığında peş peşe gerçekleştirilen aynı el aktivitelerindeki motor öğrenmenin etkinliğinin incelenmesiydi. İkincil amacı ise cinsiyetin motor öğrenme üzerindeki etkisinin incelenmesiydi. Gereç ve Yöntem: Çalışmaya üniversite öğrencileri ve yakınlarından oluşan 103 birey katıldı. Katılımcıların el fonksiyonları, 10 dakika arayla iki kez Jebsen-Taylor El Fonksiyon Testi (JEFT) ile değerlendirildi. Sonuçlar: Katılımcıların ikinci ölçümde aldıkları JEFT-Toplam puanının ilk ölçümden aldıkları puandan büyük olduğu (Δ=6,58 ± 8,16), bu farkın istatistiksel olarak çok yüksek düzeyde anlamlı olduğu (p<0,001) ve bu anlamlılığın etkisinin “büyük” olduğu belirlendi (d>0,8). JEFT’nin aşamalarının tamamında benzer şekilde ikinci ölçümün ilk ölçümden daha iyi bir sonuca sahip olduğu ve aradaki farkın istatistiksel olarak anlamlı olduğu belirlendi (p<0,001). Ayrıca iki ölçümdeki gelişimin cinsiyetler açısından benzer olmasına rağmen etki büyüklüğü bakımından erkeklerin kadınlardan (d=1,01; d=0,66) daha iyi olduğu görüldü. Tartışma: Sağlıklı bireylerde aynı ölçümlerin peş peşe yapılması sırasında motor öğrenmedeki gelişim incelendi. Motor öğrenme, değerlendirme yöntemleri ve rehabilitasyon açısından çok önemlidir. Becerinin edinimi üzerinde etkili olan pek çok faktör bulunmaktadır. Bulgular, küçük bir örneklemden elde edilmesine ve iki ölçüm arasındaki süre kısa olmasına rağmen anlamlı gelişme gözlemlendi. Elde edilen bulgular, gelecekteki motor öğrenme veya motor performans odaklı değerlendirme odaklı araştırmalar açısından katkı sağlayabilir.

Etik Beyan

Çalışma, SANKO Üniversitesi Etik Kurul Başkanlığı tarafından onaylanmıştır.

Teşekkür

Çalışmaya gönüllü olarak katılan tüm katılımcılara teşekkür ederiz.

Kaynakça

  • Backman, C., Gibson, S. C. D., & Parsons, J. (1992). Assessment of hand function: The relationship between pegboard dexterity and applied dexterity. Canadian Journal of Occupational Therapy, 59(4), 208-213. https://doi.org/10.1177/000841749205900406
  • Bagrunov, V. P. (1981). Пoлoвые различия в видoвoй и индивидуальнoй изменчивoсти психики челoвека. [Sex differences in the species and ındividual variation in the human psyche]. 157. Багрунoв ВП—Л. (In Russian)
  • Baker, K. L. (2021). Functional tests for dexterity. In T. M. Skirven, A. L. Osterman, J. M. Fedorzyk, P. C. Amadio, S. B. Feldscher, & E. K. Shin (Eds.), Rehabilitation of the Hand and Upper Extremity (7th ed., pp. 133–141). Elsevier Health Sciences.
  • Bassini, L., Patel, M, & Cooper, C. (2007). Pediatric hand therapy. In Fundamentals of hand therapy: Clinical reasoning and treatment guidelines for common diagnoses of the upper extremity (pp. 483-522). Elsevier Health Sciences.
  • Bastian, A. J. (2008). Understanding sensorimotor adaptation and learning for rehabilitation. Current Opinion in Neurology, 21(6), 628-633. https://doi.org/10.1097/WCO.0b013e328315a293
  • Boggio, P. S., Castro, L. O., Savagim, E. A., Braite, R., Cruz, V. C., Rocha, R. R., et al. (2006). Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neuroscience Letters, 404(1-2), 232-236. https://doi.org/10.1016/j.neulet.2006.05.051
  • Braun, D. A., Aertsen, A., Wolpert, D. M., & Mehring, C. (2009). Motor task variation induces structural learning. Current Biology, 19(4), 352-357. https://doi.org/10.1016/j.cub.2009.01.036
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203771587
  • Emük, Y., Kahraman, T., & Şengül, Y. (2022). Sağlıklı bireylerde cinsiyetler arasında üst ekstremite fonksiyonelliği açısından fark var mıdır? Izmir Democracy University Health Sciences Journal, 5(2), 391–401. https://doi.org/10.52538/iduhes.1116834
  • Flanagan, J. R., Nakano, E., Imamizu, H., Osu, R., Yoshioka, T., & Kawato, M. (1999). Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. Journal of Neuroscience, 19(20), RC34.
  • Hackel, M. E., Wolfe, G. A., Bang, S. M., & Canfield, J. S. (1992). Changes in hand function in the aging adult as determined by the Jebsen Test of Hand Function. Physical Therapy, 72(5), 373–377. https://doi.org/10.1093/ptj/72.5.373
  • Hadjiosif, A. M., Morehead, J. R., & Smith, M. A. (2023). A double dissociation between savings and long-term memory in motor learning. PLoS Biology, 21(4), e3001799. https://doi.org/10.1371/journal.pbio.3001799
  • Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W. H., Gerloff, C., et al. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128(3), 490–499. https://doi.org/10.1093/brain/awh369
  • Jebsen, R. H. (1969). An objective and standardized test of hand function. Archives of Physical Medicine and Rehabilitation, 50, 311–319.
  • Kantak, S. S., & Winstein, C. J. (2012). Learning–performance distinction and memory processes for motor skills: A focused review and perspective. Behavioral Brain Research, 228(1), 219–231. https://doi.org/10.1016/j.bbr.2011.11.028
  • Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., et al. (1998). The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences, 95(3), 861–868. https://doi.org/10.1073/pnas.95.3.861
  • Kitago, T., & Krakauer, J. W. (2013). Motor learning principles for neurorehabilitation. In Handbook of Clinical Neurology, 110, 93–103. https://doi.org/10.1016/B978-0-444-52901-5.00008-3
  • Krakauer, J. W. (2006). Motor learning: Its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology, 19(1), 84–90. https://doi.org/10.1097/01.wco.0000200544.29915.cc
  • Krakauer, J. W. (2009). Motor learning and consolidation: The case of visuomotor rotation. In Advances in Experimental Medicine and Biology, 629, 405–421. https://doi.org/10.1007/978-0-387-77064-2_21
  • Krakauer, J. W., Ghez, C., & Ghilardi, M. F. (2005). Adaptation to visuomotor transformations: Consolidation, interference, and forgetting. Journal of Neuroscience, 25(2), 473–478. https://doi.org/10.1523/JNEUROSCI.4218-04.2005
  • Krakauer, J. W., & Mazzoni, P. (2011). Human sensorimotor learning: Adaptation, skill, and beyond. Current Opinion in Neurobiology, 21(4), 636–644. https://doi.org/10.1016/j.conb.2011.06.012
  • Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. Journal of Neuroscience, 20(23), 8916–8924. https://doi.org/10.1523/JNEUROSCI.20-23-08916.2000
  • Krebs, H., Hogan, N., Hening, W., Adamovich, S., & Poizner, H. (2001). Procedural motor learning in Parkinson's disease. Experimental Brain Research, 141, 425–437. https://doi.org/10.1007/s002210100871
  • Lee, T. D., & Genovese, E. D. (1988). Distribution of practice in motor skill acquisition: Learning and performance effects reconsidered. Research Quarterly for Exercise and Sport, 59(4), 277–287. https://doi.org/10.1080/02701367.1988.10609373
  • Lee, K. S., & Jung, M. C. (2015). Quantitative comparison of marker attachment methods for hand motion analysis. International Journal of Occupational Safety and Ergonomics, 21(1), 30–38. https://doi.org/10.1080/10803548.2015.1017960
  • Metcalf, C. D., Notley, S. V., Chappell, P. H., Burridge, J. H., & Yule, V. T. (2008). Validation and application of a computational model for wrist and hand movements using surface markers. IEEE Transactions on Biomedical Engineering, 55(3), 1199–1210. https://doi.org/10.1109/TBME.2007.908087
  • Reissner, L., Fischer, G., List, R., Giovanoli, P., & Calcagni, M. (2019). Assessment of hand function during activities of daily living using motion tracking cameras: A systematic review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233(8), 764–783. https://doi.org/10.1177/095441191985130
  • Schmidt, R. A., Lee, T. D., Winstein, C., Wulf, G., & Zelaznik, H. N. (2018). Evolution of a field of study. In Motor control and learning: A behavioral emphasis (6th ed., pp. 3–21). Human Kinetics.
  • Sears, E. D., & Chung, K. C. (2010). Validity and responsiveness of the Jebsen–Taylor Hand Function Test. Journal of Hand Surgery American Volume, 35(1), 30–37. https://doi.org/10.1016/j.jhsa.2009.09.008
  • Shadmehr, R., & Wise, S. P. (2004). Skills, adaptation, and trajectories. In The computational neurobiology of reaching and pointing: A foundation for motor learning (1st ed., pp. 271–377). MIT Press.
  • Shea, C. H., & Kohl, R. M. (1991). Composition of practice: Influence on the retention of motor skills. Research Quarterly for Exercise and Sport, 62(2), 187–195. https://doi.org/10.1080/02701367.1991.10608709
  • Shishov, N., Melzer, I., & Bar-Haim, S. (2017). Parameters and measures in assessment of motor learning in neurorehabilitation: A systematic review of the literature. Frontiers in Human Neuroscience, 11, 82. https://doi.org/10.3389/fnhum.2017.00082
  • Shmuelof, L., Huang, V. S., Haith, A. M., Delnicki, R. J., Mazzoni, P., & Krakauer, J. W. (2012a). Overcoming motor "forgetting" through reinforcement of learned actions. Journal of Neuroscience, 32(42), 14617–14621. https://doi.org/10.1523/JNEUROSCI.2184-12.2012
  • Shmuelof, L., Krakauer, J. W., & Mazzoni, P. (2012b). How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. Journal of Neurophysiology, 108(2), 578–594. https://doi.org/10.1152/jn.00856.2011
  • Sığırtmaç, İ. C., & Öksüz, Ç. (2021). Investigation of reliability, validity, and cutoff value of the Jebsen-Taylor Hand Function Test. Journal of Hand Therapy, 34(3), 396–403. https://doi.org/10.1016/j.jht.2020.01.004
  • Takla, M. K., Mahmoud, E. A., & El-Latif, N. A. (2018). Jebsen Taylor Hand Function Test: Gender, dominance, and age differences in the healthy Egyptian population. Bulletin of the Faculty of Physical Therapy, 23, 85–93. https://doi.org/10.4103/bfpt.bfpt_11_18
  • Trempe, M., & Proteau, L. (2010). Distinct consolidation outcomes in a visuomotor adaptation task: Off-line learning and persistent after-effect. Brain and Cognition, 73(2), 135–145. https://doi.org/10.1016/j.bandc.2010.04.005
  • Zarahn, E., Weston, G. D., Liang, J., Mazzoni, P., & Krakauer, J. W. (2008). Explaining savings for visuomotor adaptation: Linear time-invariant state-space models are not sufficient. Journal of Neurophysiology, 100(5), 2537–2548. https://doi.org/10.1152/jn.90529.2008

Assessment of Motor Learning with the Jebsen-Taylor Hand Function Test

Yıl 2025, Cilt: 13 Sayı: 1, 75 - 82, 02.01.2025

Öz

Purpose: The primary aim of this study was to assess the effectiveness of motor learning (ML) in adults in the same hand activities performed consecutively over a short time. The secondary aim was to investigate the effect of gender on ML. Material and Methods: One hundred and three people (university students and their friends/relatives) participated in the study. Hand functions were assessed with the Jebsen-Taylor Hand Function Test (JHFT) twice, 10 minutes apart. Results: The JHFT-Total score of the participants in the second assessment was greater than their score in the first assessment (Δ=6.58 ± 8.16), this difference was statistically significant (p<0.001) and the effect of this significance was "large" (d>0.8). Similarly, the second assessment results had a better result than the first in all substages of JHFT and the difference was statistically significant (p<0.001). The improvement in the two assessments was similar between genders (p<0.001), but the effect size in men was greater than women (d=1.01; d=0.66). Conclusion: Participants showed significant ML improvement in this short-term study. Motor learning is critical in terms of assessment and rehabilitation. Although the findings obtained in the study were from a small sample and the interval was short, significant improvement was observed. These findings may contribute to future research on ML or performance-oriented assessment.

Kaynakça

  • Backman, C., Gibson, S. C. D., & Parsons, J. (1992). Assessment of hand function: The relationship between pegboard dexterity and applied dexterity. Canadian Journal of Occupational Therapy, 59(4), 208-213. https://doi.org/10.1177/000841749205900406
  • Bagrunov, V. P. (1981). Пoлoвые различия в видoвoй и индивидуальнoй изменчивoсти психики челoвека. [Sex differences in the species and ındividual variation in the human psyche]. 157. Багрунoв ВП—Л. (In Russian)
  • Baker, K. L. (2021). Functional tests for dexterity. In T. M. Skirven, A. L. Osterman, J. M. Fedorzyk, P. C. Amadio, S. B. Feldscher, & E. K. Shin (Eds.), Rehabilitation of the Hand and Upper Extremity (7th ed., pp. 133–141). Elsevier Health Sciences.
  • Bassini, L., Patel, M, & Cooper, C. (2007). Pediatric hand therapy. In Fundamentals of hand therapy: Clinical reasoning and treatment guidelines for common diagnoses of the upper extremity (pp. 483-522). Elsevier Health Sciences.
  • Bastian, A. J. (2008). Understanding sensorimotor adaptation and learning for rehabilitation. Current Opinion in Neurology, 21(6), 628-633. https://doi.org/10.1097/WCO.0b013e328315a293
  • Boggio, P. S., Castro, L. O., Savagim, E. A., Braite, R., Cruz, V. C., Rocha, R. R., et al. (2006). Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neuroscience Letters, 404(1-2), 232-236. https://doi.org/10.1016/j.neulet.2006.05.051
  • Braun, D. A., Aertsen, A., Wolpert, D. M., & Mehring, C. (2009). Motor task variation induces structural learning. Current Biology, 19(4), 352-357. https://doi.org/10.1016/j.cub.2009.01.036
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203771587
  • Emük, Y., Kahraman, T., & Şengül, Y. (2022). Sağlıklı bireylerde cinsiyetler arasında üst ekstremite fonksiyonelliği açısından fark var mıdır? Izmir Democracy University Health Sciences Journal, 5(2), 391–401. https://doi.org/10.52538/iduhes.1116834
  • Flanagan, J. R., Nakano, E., Imamizu, H., Osu, R., Yoshioka, T., & Kawato, M. (1999). Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. Journal of Neuroscience, 19(20), RC34.
  • Hackel, M. E., Wolfe, G. A., Bang, S. M., & Canfield, J. S. (1992). Changes in hand function in the aging adult as determined by the Jebsen Test of Hand Function. Physical Therapy, 72(5), 373–377. https://doi.org/10.1093/ptj/72.5.373
  • Hadjiosif, A. M., Morehead, J. R., & Smith, M. A. (2023). A double dissociation between savings and long-term memory in motor learning. PLoS Biology, 21(4), e3001799. https://doi.org/10.1371/journal.pbio.3001799
  • Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W. H., Gerloff, C., et al. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128(3), 490–499. https://doi.org/10.1093/brain/awh369
  • Jebsen, R. H. (1969). An objective and standardized test of hand function. Archives of Physical Medicine and Rehabilitation, 50, 311–319.
  • Kantak, S. S., & Winstein, C. J. (2012). Learning–performance distinction and memory processes for motor skills: A focused review and perspective. Behavioral Brain Research, 228(1), 219–231. https://doi.org/10.1016/j.bbr.2011.11.028
  • Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., et al. (1998). The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences, 95(3), 861–868. https://doi.org/10.1073/pnas.95.3.861
  • Kitago, T., & Krakauer, J. W. (2013). Motor learning principles for neurorehabilitation. In Handbook of Clinical Neurology, 110, 93–103. https://doi.org/10.1016/B978-0-444-52901-5.00008-3
  • Krakauer, J. W. (2006). Motor learning: Its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology, 19(1), 84–90. https://doi.org/10.1097/01.wco.0000200544.29915.cc
  • Krakauer, J. W. (2009). Motor learning and consolidation: The case of visuomotor rotation. In Advances in Experimental Medicine and Biology, 629, 405–421. https://doi.org/10.1007/978-0-387-77064-2_21
  • Krakauer, J. W., Ghez, C., & Ghilardi, M. F. (2005). Adaptation to visuomotor transformations: Consolidation, interference, and forgetting. Journal of Neuroscience, 25(2), 473–478. https://doi.org/10.1523/JNEUROSCI.4218-04.2005
  • Krakauer, J. W., & Mazzoni, P. (2011). Human sensorimotor learning: Adaptation, skill, and beyond. Current Opinion in Neurobiology, 21(4), 636–644. https://doi.org/10.1016/j.conb.2011.06.012
  • Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. Journal of Neuroscience, 20(23), 8916–8924. https://doi.org/10.1523/JNEUROSCI.20-23-08916.2000
  • Krebs, H., Hogan, N., Hening, W., Adamovich, S., & Poizner, H. (2001). Procedural motor learning in Parkinson's disease. Experimental Brain Research, 141, 425–437. https://doi.org/10.1007/s002210100871
  • Lee, T. D., & Genovese, E. D. (1988). Distribution of practice in motor skill acquisition: Learning and performance effects reconsidered. Research Quarterly for Exercise and Sport, 59(4), 277–287. https://doi.org/10.1080/02701367.1988.10609373
  • Lee, K. S., & Jung, M. C. (2015). Quantitative comparison of marker attachment methods for hand motion analysis. International Journal of Occupational Safety and Ergonomics, 21(1), 30–38. https://doi.org/10.1080/10803548.2015.1017960
  • Metcalf, C. D., Notley, S. V., Chappell, P. H., Burridge, J. H., & Yule, V. T. (2008). Validation and application of a computational model for wrist and hand movements using surface markers. IEEE Transactions on Biomedical Engineering, 55(3), 1199–1210. https://doi.org/10.1109/TBME.2007.908087
  • Reissner, L., Fischer, G., List, R., Giovanoli, P., & Calcagni, M. (2019). Assessment of hand function during activities of daily living using motion tracking cameras: A systematic review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233(8), 764–783. https://doi.org/10.1177/095441191985130
  • Schmidt, R. A., Lee, T. D., Winstein, C., Wulf, G., & Zelaznik, H. N. (2018). Evolution of a field of study. In Motor control and learning: A behavioral emphasis (6th ed., pp. 3–21). Human Kinetics.
  • Sears, E. D., & Chung, K. C. (2010). Validity and responsiveness of the Jebsen–Taylor Hand Function Test. Journal of Hand Surgery American Volume, 35(1), 30–37. https://doi.org/10.1016/j.jhsa.2009.09.008
  • Shadmehr, R., & Wise, S. P. (2004). Skills, adaptation, and trajectories. In The computational neurobiology of reaching and pointing: A foundation for motor learning (1st ed., pp. 271–377). MIT Press.
  • Shea, C. H., & Kohl, R. M. (1991). Composition of practice: Influence on the retention of motor skills. Research Quarterly for Exercise and Sport, 62(2), 187–195. https://doi.org/10.1080/02701367.1991.10608709
  • Shishov, N., Melzer, I., & Bar-Haim, S. (2017). Parameters and measures in assessment of motor learning in neurorehabilitation: A systematic review of the literature. Frontiers in Human Neuroscience, 11, 82. https://doi.org/10.3389/fnhum.2017.00082
  • Shmuelof, L., Huang, V. S., Haith, A. M., Delnicki, R. J., Mazzoni, P., & Krakauer, J. W. (2012a). Overcoming motor "forgetting" through reinforcement of learned actions. Journal of Neuroscience, 32(42), 14617–14621. https://doi.org/10.1523/JNEUROSCI.2184-12.2012
  • Shmuelof, L., Krakauer, J. W., & Mazzoni, P. (2012b). How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. Journal of Neurophysiology, 108(2), 578–594. https://doi.org/10.1152/jn.00856.2011
  • Sığırtmaç, İ. C., & Öksüz, Ç. (2021). Investigation of reliability, validity, and cutoff value of the Jebsen-Taylor Hand Function Test. Journal of Hand Therapy, 34(3), 396–403. https://doi.org/10.1016/j.jht.2020.01.004
  • Takla, M. K., Mahmoud, E. A., & El-Latif, N. A. (2018). Jebsen Taylor Hand Function Test: Gender, dominance, and age differences in the healthy Egyptian population. Bulletin of the Faculty of Physical Therapy, 23, 85–93. https://doi.org/10.4103/bfpt.bfpt_11_18
  • Trempe, M., & Proteau, L. (2010). Distinct consolidation outcomes in a visuomotor adaptation task: Off-line learning and persistent after-effect. Brain and Cognition, 73(2), 135–145. https://doi.org/10.1016/j.bandc.2010.04.005
  • Zarahn, E., Weston, G. D., Liang, J., Mazzoni, P., & Krakauer, J. W. (2008). Explaining savings for visuomotor adaptation: Linear time-invariant state-space models are not sufficient. Journal of Neurophysiology, 100(5), 2537–2548. https://doi.org/10.1152/jn.90529.2008
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İş Terapisi, Rehabilitasyon, Yardımcı Sağlık ve Rehabilitasyon Bilimi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Halil İbrahim Ergen 0000-0002-5215-2642

İbrahim Demirçubuk 0000-0002-6574-9587

Şeyma Bayraktar 0009-0002-5502-2445

Mehmet Eğilmez 0000-0002-8153-720X

Çiğdem Öksüz 0000-0002-3243-8897

Nevin Ergun 0000-0001-6575-7205

Erken Görünüm Tarihi 29 Aralık 2024
Yayımlanma Tarihi 2 Ocak 2025
Gönderilme Tarihi 22 Mart 2024
Kabul Tarihi 6 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Ergen, H. İ., Demirçubuk, İ., Bayraktar, Ş., Eğilmez, M., vd. (2025). Motor Öğrenme Süreçlerinin Jebsen-Taylor El Fonksiyon Testi ile Değerlendirilmesi. Ergoterapi Ve Rehabilitasyon Dergisi, 13(1), 75-82.
AMA Ergen Hİ, Demirçubuk İ, Bayraktar Ş, Eğilmez M, Öksüz Ç, Ergun N. Motor Öğrenme Süreçlerinin Jebsen-Taylor El Fonksiyon Testi ile Değerlendirilmesi. Ergoterapi ve Rehabilitasyon Dergisi. Ocak 2025;13(1):75-82.
Chicago Ergen, Halil İbrahim, İbrahim Demirçubuk, Şeyma Bayraktar, Mehmet Eğilmez, Çiğdem Öksüz, ve Nevin Ergun. “Motor Öğrenme Süreçlerinin Jebsen-Taylor El Fonksiyon Testi Ile Değerlendirilmesi”. Ergoterapi Ve Rehabilitasyon Dergisi 13, sy. 1 (Ocak 2025): 75-82.
EndNote Ergen Hİ, Demirçubuk İ, Bayraktar Ş, Eğilmez M, Öksüz Ç, Ergun N (01 Ocak 2025) Motor Öğrenme Süreçlerinin Jebsen-Taylor El Fonksiyon Testi ile Değerlendirilmesi. Ergoterapi ve Rehabilitasyon Dergisi 13 1 75–82.
IEEE H. İ. Ergen, İ. Demirçubuk, Ş. Bayraktar, M. Eğilmez, Ç. Öksüz, ve N. Ergun, “Motor Öğrenme Süreçlerinin Jebsen-Taylor El Fonksiyon Testi ile Değerlendirilmesi”, Ergoterapi ve Rehabilitasyon Dergisi, c. 13, sy. 1, ss. 75–82, 2025.
ISNAD Ergen, Halil İbrahim vd. “Motor Öğrenme Süreçlerinin Jebsen-Taylor El Fonksiyon Testi Ile Değerlendirilmesi”. Ergoterapi ve Rehabilitasyon Dergisi 13/1 (Ocak 2025), 75-82.
JAMA Ergen Hİ, Demirçubuk İ, Bayraktar Ş, Eğilmez M, Öksüz Ç, Ergun N. Motor Öğrenme Süreçlerinin Jebsen-Taylor El Fonksiyon Testi ile Değerlendirilmesi. Ergoterapi ve Rehabilitasyon Dergisi. 2025;13:75–82.
MLA Ergen, Halil İbrahim vd. “Motor Öğrenme Süreçlerinin Jebsen-Taylor El Fonksiyon Testi Ile Değerlendirilmesi”. Ergoterapi Ve Rehabilitasyon Dergisi, c. 13, sy. 1, 2025, ss. 75-82.
Vancouver Ergen Hİ, Demirçubuk İ, Bayraktar Ş, Eğilmez M, Öksüz Ç, Ergun N. Motor Öğrenme Süreçlerinin Jebsen-Taylor El Fonksiyon Testi ile Değerlendirilmesi. Ergoterapi ve Rehabilitasyon Dergisi. 2025;13(1):75-82.

Ergoterapi ve Rehabilitasyon Dergisi by Hacettepe University, Faculty of Health Sciences is licensed under Attribution-NonCommercial 4.0 Internationalcc.svg?ref=chooser-v1by.svg?ref=chooser-v1nc.svg?ref=chooser-v1