Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 6 Sayı: 2, 117 - 127, 30.06.2023
https://doi.org/10.33401/fujma.1277288

Öz

Kaynakça

  • [1] M. T. K. Abbassi, N. Amri, C. L. Bejan, Conformal vector fields and Ricci soliton structures on natural Riemann extensions, Mediterr. J. Math., 18(2) (2021), 1–16.
  • [2] C. L. Bejan, M. Crasmareanu, Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry, Ann. Global Anal. Geom., 46(2) (2014), 117–127.
  • [3] A. M. Blaga, C. Özgür, Almost h-Ricci and almost h-Yamabe solitons with torse-forming potential vector field, Quaest. Math., 45(1) (2022), 143–163.
  • [4] B. Y. Chen, S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl., 19(1) (2014), 13–21.
  • [5] S. Deshmukh, H. Alodan, H. Al-Sodais, A note on Ricci solitons, Balkan J. Geom. Appl., 16(1) (2011), 48–55.
  • [6] S. Y. Perktaş, S. Keleş, Ricci solitons in 3-dimensional normal almost paracontact metric manifolds, Int. Electron. J. Geom., 8(2) (2015), 34–45.
  • [7] A. Sardar, U. C. De, h-Ricci solitons on para-Kenmotsu manifolds, Differ. Geom. Dyn. Syst., 22 (2020), 218–228.
  • [8] H. İ. Yoldaş, Ş. Eken Meriç, E. Yaşar, Some special vector fields on a cosymplectic manifold admitting a Ricci soliton, Miskolc Math. Notes, 22(2) (2021), 1039–1050.
  • [9] K. Yano, On the torse-forming direction in Riemannian spaces, Proceedings of the Imperial Academy, 20(6) (1944), 340-345.
  • [10] B. Y. Chen, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52(5) (2015), 1535–1547.
  • [11] B. Y. Chen, Concircular vector fields and pseudo-Kaehler manifolds, Kragujevac J. Math., 40(1) (2016), 7–14.
  • [12] B. Y. Chen, S. Deshmukh, Some results about concircular vector fields on Riemannian manifolds, Filomat, 34(3) (2020), 835–842.
  • [13] S. Deshmukh, K. İlarslan, H. Alsodais, U. C. De, Spheres and Euclidean spaces via concircular vector fields, Mediterr. J. Math., 18(5) (2021), 1–14.
  • [14] D. A. Kaya, L. Onat, Almost Ricci solitons and concircular vector fields, An. S¸ tiint¸. Univ. Al. I. Cuza Ias¸i. Mat. (N.S.), 64 (2018), 199-204.
  • [15] S. Khan, A. Mahmood, A. T. Ali, Concircular vector fields for Kantowski-Sachs and Bianchi type-III spacetimes, Int. J. Geom. Methods Mod. Phys., 15(08) (2018), 1850126.
  • [16] E. Kılıç, M. Gülbahar, E. Kavuk, Concurrent vector fields on lightlike hypersurfaces, Mathematics, 9(1) (2020), 59.
  • [17] K. L. Duggal, A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Springer Dordrecht: Kluwer Academic Publishers, London, UK, 1996.
  • [18] K. L. Duggal, A. Bejancu, Lightlike submanifolds of codimension two, Toyama Math. J., 15 (1992), 59–82.
  • [19] K. L. Duggal, B. Şahin, Screen conformal half-lightlike submanifolds, Int. J. Math. Math. Sci., 2004(68) (2004), 3737–3753.
  • [20] D. N. Kupeli, Singular Semi-Riemannian Geometry, Kluwer Academic, 1996.
  • [21] K. L. Duggal, D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J., 26 (2003), 49-–68.
  • [22] K. L. Duggal, B. Şahin, Differential Geometry of Lightlike Submanifolds, Springer Science, Business Media: Berlin, Germany, 2011.
  • [23] K. L. Duggal, D. H. Jin, Half-lightlike submanifolds of codimension 2, Toyama Math. J., 22 (1999), 121–161.
  • [24] D.H. Jin, Geometry of coisotropic submanifolds, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math., 8(1) (2001), 33—46.

Ricci Soliton Lightlike Submanifolds with Co-Dimension $2$

Yıl 2023, Cilt: 6 Sayı: 2, 117 - 127, 30.06.2023
https://doi.org/10.33401/fujma.1277288

Öz

The necessary requirements for half-lightlike and coisotropic lightlike submanifolds to be a Ricci soliton are obtained. Some examples of Ricci soliton half-lightlike and Ricci soliton coisotropic lightlike submanifolds are given. The Ricci soliton equation is investigated on totally geodesic, totally umbilical, and irrotational lightlike submanifolds.

Kaynakça

  • [1] M. T. K. Abbassi, N. Amri, C. L. Bejan, Conformal vector fields and Ricci soliton structures on natural Riemann extensions, Mediterr. J. Math., 18(2) (2021), 1–16.
  • [2] C. L. Bejan, M. Crasmareanu, Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry, Ann. Global Anal. Geom., 46(2) (2014), 117–127.
  • [3] A. M. Blaga, C. Özgür, Almost h-Ricci and almost h-Yamabe solitons with torse-forming potential vector field, Quaest. Math., 45(1) (2022), 143–163.
  • [4] B. Y. Chen, S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl., 19(1) (2014), 13–21.
  • [5] S. Deshmukh, H. Alodan, H. Al-Sodais, A note on Ricci solitons, Balkan J. Geom. Appl., 16(1) (2011), 48–55.
  • [6] S. Y. Perktaş, S. Keleş, Ricci solitons in 3-dimensional normal almost paracontact metric manifolds, Int. Electron. J. Geom., 8(2) (2015), 34–45.
  • [7] A. Sardar, U. C. De, h-Ricci solitons on para-Kenmotsu manifolds, Differ. Geom. Dyn. Syst., 22 (2020), 218–228.
  • [8] H. İ. Yoldaş, Ş. Eken Meriç, E. Yaşar, Some special vector fields on a cosymplectic manifold admitting a Ricci soliton, Miskolc Math. Notes, 22(2) (2021), 1039–1050.
  • [9] K. Yano, On the torse-forming direction in Riemannian spaces, Proceedings of the Imperial Academy, 20(6) (1944), 340-345.
  • [10] B. Y. Chen, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52(5) (2015), 1535–1547.
  • [11] B. Y. Chen, Concircular vector fields and pseudo-Kaehler manifolds, Kragujevac J. Math., 40(1) (2016), 7–14.
  • [12] B. Y. Chen, S. Deshmukh, Some results about concircular vector fields on Riemannian manifolds, Filomat, 34(3) (2020), 835–842.
  • [13] S. Deshmukh, K. İlarslan, H. Alsodais, U. C. De, Spheres and Euclidean spaces via concircular vector fields, Mediterr. J. Math., 18(5) (2021), 1–14.
  • [14] D. A. Kaya, L. Onat, Almost Ricci solitons and concircular vector fields, An. S¸ tiint¸. Univ. Al. I. Cuza Ias¸i. Mat. (N.S.), 64 (2018), 199-204.
  • [15] S. Khan, A. Mahmood, A. T. Ali, Concircular vector fields for Kantowski-Sachs and Bianchi type-III spacetimes, Int. J. Geom. Methods Mod. Phys., 15(08) (2018), 1850126.
  • [16] E. Kılıç, M. Gülbahar, E. Kavuk, Concurrent vector fields on lightlike hypersurfaces, Mathematics, 9(1) (2020), 59.
  • [17] K. L. Duggal, A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Springer Dordrecht: Kluwer Academic Publishers, London, UK, 1996.
  • [18] K. L. Duggal, A. Bejancu, Lightlike submanifolds of codimension two, Toyama Math. J., 15 (1992), 59–82.
  • [19] K. L. Duggal, B. Şahin, Screen conformal half-lightlike submanifolds, Int. J. Math. Math. Sci., 2004(68) (2004), 3737–3753.
  • [20] D. N. Kupeli, Singular Semi-Riemannian Geometry, Kluwer Academic, 1996.
  • [21] K. L. Duggal, D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J., 26 (2003), 49-–68.
  • [22] K. L. Duggal, B. Şahin, Differential Geometry of Lightlike Submanifolds, Springer Science, Business Media: Berlin, Germany, 2011.
  • [23] K. L. Duggal, D. H. Jin, Half-lightlike submanifolds of codimension 2, Toyama Math. J., 22 (1999), 121–161.
  • [24] D.H. Jin, Geometry of coisotropic submanifolds, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math., 8(1) (2001), 33—46.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Erol Kılıç 0000-0001-7536-0404

Mehmet Gülbahar 0000-0001-6950-7633

Ecem Kavuk 0000-0002-8922-2691

Esra Erkan 0000-0003-0456-6418

Erken Görünüm Tarihi 11 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 4 Nisan 2023
Kabul Tarihi 1 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 2

Kaynak Göster

APA Kılıç, E., Gülbahar, M., Kavuk, E., Erkan, E. (2023). Ricci Soliton Lightlike Submanifolds with Co-Dimension $2$. Fundamental Journal of Mathematics and Applications, 6(2), 117-127. https://doi.org/10.33401/fujma.1277288
AMA Kılıç E, Gülbahar M, Kavuk E, Erkan E. Ricci Soliton Lightlike Submanifolds with Co-Dimension $2$. Fundam. J. Math. Appl. Haziran 2023;6(2):117-127. doi:10.33401/fujma.1277288
Chicago Kılıç, Erol, Mehmet Gülbahar, Ecem Kavuk, ve Esra Erkan. “Ricci Soliton Lightlike Submanifolds With Co-Dimension $2$”. Fundamental Journal of Mathematics and Applications 6, sy. 2 (Haziran 2023): 117-27. https://doi.org/10.33401/fujma.1277288.
EndNote Kılıç E, Gülbahar M, Kavuk E, Erkan E (01 Haziran 2023) Ricci Soliton Lightlike Submanifolds with Co-Dimension $2$. Fundamental Journal of Mathematics and Applications 6 2 117–127.
IEEE E. Kılıç, M. Gülbahar, E. Kavuk, ve E. Erkan, “Ricci Soliton Lightlike Submanifolds with Co-Dimension $2$”, Fundam. J. Math. Appl., c. 6, sy. 2, ss. 117–127, 2023, doi: 10.33401/fujma.1277288.
ISNAD Kılıç, Erol vd. “Ricci Soliton Lightlike Submanifolds With Co-Dimension $2$”. Fundamental Journal of Mathematics and Applications 6/2 (Haziran 2023), 117-127. https://doi.org/10.33401/fujma.1277288.
JAMA Kılıç E, Gülbahar M, Kavuk E, Erkan E. Ricci Soliton Lightlike Submanifolds with Co-Dimension $2$. Fundam. J. Math. Appl. 2023;6:117–127.
MLA Kılıç, Erol vd. “Ricci Soliton Lightlike Submanifolds With Co-Dimension $2$”. Fundamental Journal of Mathematics and Applications, c. 6, sy. 2, 2023, ss. 117-2, doi:10.33401/fujma.1277288.
Vancouver Kılıç E, Gülbahar M, Kavuk E, Erkan E. Ricci Soliton Lightlike Submanifolds with Co-Dimension $2$. Fundam. J. Math. Appl. 2023;6(2):117-2.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a