Araştırma Makalesi
BibTex RIS Kaynak Göster

Atık parke taşı malzemesinin plent-miks temel tabakasında kullanımının deneysel olarak incelenmesi

Yıl 2022, Cilt: 37 Sayı: 3, 1309 - 1324, 28.02.2022
https://doi.org/10.17341/gazimmfd.937944

Öz

Son yıllarda inşaat sektöründe yaşanan büyüme nedeniyle özellikle doğal agregalara olan ihtiyaç artış göstermiştir. Söz konusu bu ihtiyaç artışı beraberinde birçok etkiyi ortaya çıkarmıştır. Ortaya çıkan bu etkilerin olumsuzluklarını giderebilmek için doğal agregaya alternatif malzeme arayışına başlanmıştır. Bu malzemelerin başında inşaat ve yıkım faaliyetleri sonucunda ortaya çıkan inşaat ve yıkıntı atıkları yer almaktadır. İnşaat ve yıkıntı atıkları genellikle beton, tuğla, çelik, asfalt gibi malzemelerden oluşmaktadır. Bu atıkların geri dönüşümünün sağlanarak yeniden kullanımı doğal agregaların tüketiminin azaltılması açısından büyük önem taşımaktadır. Bu çalışma kapsamında depolama tesisinden elde edilen atık parke taşının (APT) doğal agrega (DA) yerine karayolu plent-miks temel tabakasında kullanılabilirliği incelenmiştir. Çalışmada Karayolu Teknik Şartnamesinde 2013’de (KTŞ 2013) belirtilen plent-miks temel tabakası tip 1’e göre gradasyon belirlenmiş ve temel tasarımı bu gradasyon limitlerinde kalınacak şekilde yapılmıştır. Tasarımı yapılan plent-miks temel tabakası için tek başına kullanılacak olan DA ve APT numunelerinin ve bu malzemelerin belirli oranlarda karıştırılması ile elde edilen karışım numunelerinin fiziksel ve mekanik özelliklerinin belirlenmesi için KTŞ 2013’de belirtilen deneyler gerçekleştirilmiştir. Elde edilen sonuçlar KTŞ 2013’de yer alan limit değerleri ve doğal agrega numunelerinden elde edilen deney sonuçları ile karşılaştırılmıştır. Deney sonuçları incelendiğinde APT malzemesine ait su emme ve aşınma değerinin DA malzemesine göre daha yüksek olduğu ve şartname limitini sağlamadığı belirlenmiştir. Ancak diğer deney sonuçlarında APT malzemesi şartname limitlerini sağlamıştır.

Destekleyen Kurum

Tekirdağ Namık Kemal Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

NKUBAP.06.YL.19.228

Teşekkür

Bu çalışma Tekirdağ Namık Kemal Üniversitesi Bilimsel Araştırmalar Birimi tarafından desteklenmiştir (Proje No: NKUBAP.06.YL.19.228).

Kaynakça

  • 1. Vieira, C. S., Pereira, P. M., Use of Recycled Construction and Demolition Materials in Geotechnical Applications: A Review. Resources, Conservation and Recycling, 103, 192-204, 2015.
  • 2. Bennert, T., Papp, W., Maher, A., Gucunski, N., Utilization of Construction and Demolition Debris Under Traffic-Type Loading in Base and Subbase Applications. Research Record: Journal of the Transportation Research Board, 1714, 33-39, 2000.
  • 3. Aatheesan. T., Arulrajah, A., Bo, M. W., Vuong, B., Wilson, J., Crushed Brick Blends With Crushed Rock Pavement Systems. Waste and Resources Management, 163, 29-35, 2010.
  • 4. Arulrajah, A., Piratheepan, J., Bo, M. W., Sivakugan, N., Geotechnical Characteristics of Recycled Crushed Brick Blends for Pavement Sub-base Applications. Canadian Geotechnical Journal, 49, 796-811, 2012.
  • 5. Edil, T. B., A Review of Recycled Aggregates (RAP and RCA) As Unbound Base Course Material for Sustaniable Highway Construction. Proceedings of the 4th Congres International de Geotechnique-Ouvrages-Structures, CIGOS 2017, Singapore, 2018.
  • 6. Karayolları Genel Müdürlüğü, Karayolu Teknik Şartnamesi, KGM Yayını, Ankara, 2013.
  • 7. TS EN 1097-6, Agregaların Mekanik ve Fiziksel Özellikleri İçin Deneyler 6: Tane Yoğunluğu ve Su Emme Oranı Tayini, Türk Standartları Enstitüsü, Ankara, 2013.
  • 8. ASTM C131, Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact In The Los Angeles Machine, American Society for Testing and Materials, West Conshohocken, 2014.
  • 9. BS 812-105.1, Part 105: Methods for Determination of Particle Shape-Section 105.1 Flakiness Index, British Standards Institution, London, 1990.
  • 10. TS EN 1744-1:2009+A1, Agregaların Kimyasal Özellikleri İçin Deneyler-Bölüm 1: Kimyasal Analiz, Türk Standartları Enstitüsü, Ankara, 2013.
  • 11. ASTM C142, Standard Test Method for Clay Lumps and Friable Particles In Aggregates, Americam Society for Testing and Materials, West Conshohocken, 2017.
  • 12. TS EN 1367-2, Agregaların Termal ve Bozunma Özellikleri İçin Deneyler – Bölüm 2: Magnezyum Sülfat Deneyi, Türk Standartları Enstitüsü, Ankara, 2011.
  • 13. TS 1900-1, İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri – Bölüm 1: Fiziksel Özelliklerin Tayini, Türk Standartları Enstitüsü, Ankara, 2015.
  • 14. TS EN 933-9+A1, Agregaların Geometrik Özellikleri İçin Deneyler – Bölüm 9: İnce Tanelerin Tayini İçin Metilen Mavisi Deneyi, Türk Standartları Enstitüsü, Ankara, 2014.
  • 15. AASHTO T 193-10, The California Bearing Ratio, American Association of State Highway and Transportation Officials, Washington, 2012.
  • 16. Lekarp, F., Isacsson, U., and Dawson, A., 2000. “State of Art I: Resilient Responseof Unbound Aggregates,” Journal of Transportation Engineering, ASCE, Vol (1).
  • 17. AASHTO T 307-99. Standard Method of Test for Determining The Resilient Modulus of Soils and Aggregate Materials, American Association of State Highway and Transportation Officials, Washington, 2012.
  • 18. NCHRP (1-28A). Harmonized Test Methods for Laboratory Determination of Resilient Modulus for Flexible Pavement Design (1-28A). National Research Council, Washington, D.C.
  • 19. Arulrajah, A., Disfani, M. M., Horpibulsuk, S., Suksiripattanapong, C., Prongmanee, N., Physical Properties and Shear Strength Responses of Recycled Construction and Demolition Materials in Unbound Pavement Base/Subbase Applications. Construction and Building Materials, 58, 245-257, 2014.
  • 20. Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Bo, M. W., Darmawan, S., Laboratory Evaluation of the Use of Cement-Treated Construction and Demolition Materials in Pavement Base and Subbase Applications. Journal of Materials in Civil Engineering, 27(6), 04014186, 2015.
  • 21. Cai, X., Li, X., Wu, K., Huang, W., Grading Design of Recycled Aggregate Cement-Stabilized Gravel Based on Rotary Compaction. Journal of Highway and Transportation Research and Development, 12(3), 1-6, 2018.
  • 22. Bozyurt, O., Tinjum, J. M., Son, Y., Edil, T. B., Benson, C. H., Resilient Modulus of Recycled Asphalt Pavement and Recycled Concrete Aggregate. Geo-Congress March 25-29, Oakland, California, United States, 2012.
  • 23. Jayakody, S., Gallage, C., Ramanujam, J., Effects of Reclaimed Asphalt Materials on Geotechnical Characteristics of Recycled Concrete Aggregates As a Pavement Material. Road Materials and Pavement Desing. DOI: 10.1080/14680629.2017.1417151, 2017.
  • 24. Tahmoorian, F., Samali, B., Laboratory Investigations on the Utilization of RCA in Asphalt Mixtures. International Journal of Pavement Research and Technology, 11, 627-638, 2018.
  • 25. Gabr, A. R., Cameron, D. A., Properties of Recycled Concrete Aggregate for Unbound Pavement Construction. Journal of Materials in Civil Engineering, 24(6), 754-764, 2012.
  • 26. Jiménez, J. R., Ayuso, J., Agrela, F., Lopez, M., Galvin, A. P., Utilisation of Unbound Recycled Aggregates From Selected CDW in Unpaved Rural Roads. Resources, Conservation and Recycling, 58, 88-97, 2012.
  • 27. Haider, I., Cetin, B., Kaya, Z., Hatipoglu, M., Cetin, A., Ahmet, H. A., Evaluation of the Mechanical Performance of Recycled Concrete Aggregates Used in Highway Base Layers. Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, Atlanta, United States 2014.
  • 28. Kumar, R., Influence of Recycled Coarse Aggregate Derived From Construction and Demolition Waste (CDW) on Abrasion Resistance of Pavement Concrete. Construction and Building Materials, 142, 248-255, 2017.
  • 29. Soleimanbeigi, A. Ve Edil, T. B., Compressibility of Recycled Materials for Use As Highway Embankment Fill. Journal of Geotechnical and Geoenvironmental Engineering, 141, 04015011, 2015.
  • 30. Poon, C. S., Chan, D., Feasible Use of Recycled Concrete Aggregates and Crushed Clay Brick As Unbound Road Sub-Base. Construction and Building Materials, 20, 578-585, 2006.
  • 31. Barbudo, A., Agrela, F., Ayuso, J., Jimenez, J. R., Poon, C. S., Statistical Analysis of Recycled Aggregates Derived From Different Sources for Sub-base Applications. Construction and Building Materials, 28, 129-138, 2012.
  • 32. Kılıç B., Yüksek Lisans Tezi, Tekirdağ Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Tekirdağ, 2020.
  • 33. Arulrajah, A., Piratheepan, J., Ali, M. M. Y., Bo, M. W., Geotechnical Properties of Recycled Concrete Aggregate in Pavement Sub-base Applications. Geotechnical Testing Journal, 35, 1-9, 2012.
  • 34. Disfani, M. M., Arulrajah, A., Haghighi, H., Mohammadinia, A., Horpibulsuk, S., Flexural Beam Fatigue Strength Evalution of Crushed Brick as A Supplementary Material in Cement Stabilized Recycled Concrete Aggregates, Construction and Building Materials, 68, 667-676, 2014.

Experimentally investigating the usability of waste interlocking concrete paver in the plant-mix base layer

Yıl 2022, Cilt: 37 Sayı: 3, 1309 - 1324, 28.02.2022
https://doi.org/10.17341/gazimmfd.937944

Öz

Due to the growth in the construction industry in recent years, the need for natural aggregates has increased. This increase in need has created many effects. In order to eliminate the effects of these effects, the search for alternative materials to natural aggregate has begun. Construction and demolition wastes generated as a result of construction and demolition activities are among these materials. Construction and demolition wastes generally consist of materials such as concrete, brick, steel and asphalt. The recycling and reuse of these wastes is of great importance in terms of reducing the consumption of natural aggregates. Within the scope of this study, the usability of waste interlocking concrete paver (ICP) obtained from the storage facility in the plant-mix base layer instead of natural aggregate (NA) was examined. In this study, the gradation was determined according to the plant-mix base layer type 1 specified in the Turkey Highway Technical Specification 2013 (THTS 2013), and the base design was made to remain within these gradation limits. For the designed plant-mix base layer; in order to determine the physical and mechanical properties of the DA and APT samples to be used alone and the mixture samples obtained by mixing these materials in certain proportions, the tests specified in the THTS 2013 were carried out. The obtained results have been compared with the limit values in the THTS 2013 and the test results obtained from natural aggregate samples. When the experimental results were examined, it was determined that the water absorption and abrasion values of the ICP material were higher than the NA material and that it did not meet the specification limit. However, in the other test results, the ICP material met the specification limits.

Proje Numarası

NKUBAP.06.YL.19.228

Kaynakça

  • 1. Vieira, C. S., Pereira, P. M., Use of Recycled Construction and Demolition Materials in Geotechnical Applications: A Review. Resources, Conservation and Recycling, 103, 192-204, 2015.
  • 2. Bennert, T., Papp, W., Maher, A., Gucunski, N., Utilization of Construction and Demolition Debris Under Traffic-Type Loading in Base and Subbase Applications. Research Record: Journal of the Transportation Research Board, 1714, 33-39, 2000.
  • 3. Aatheesan. T., Arulrajah, A., Bo, M. W., Vuong, B., Wilson, J., Crushed Brick Blends With Crushed Rock Pavement Systems. Waste and Resources Management, 163, 29-35, 2010.
  • 4. Arulrajah, A., Piratheepan, J., Bo, M. W., Sivakugan, N., Geotechnical Characteristics of Recycled Crushed Brick Blends for Pavement Sub-base Applications. Canadian Geotechnical Journal, 49, 796-811, 2012.
  • 5. Edil, T. B., A Review of Recycled Aggregates (RAP and RCA) As Unbound Base Course Material for Sustaniable Highway Construction. Proceedings of the 4th Congres International de Geotechnique-Ouvrages-Structures, CIGOS 2017, Singapore, 2018.
  • 6. Karayolları Genel Müdürlüğü, Karayolu Teknik Şartnamesi, KGM Yayını, Ankara, 2013.
  • 7. TS EN 1097-6, Agregaların Mekanik ve Fiziksel Özellikleri İçin Deneyler 6: Tane Yoğunluğu ve Su Emme Oranı Tayini, Türk Standartları Enstitüsü, Ankara, 2013.
  • 8. ASTM C131, Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact In The Los Angeles Machine, American Society for Testing and Materials, West Conshohocken, 2014.
  • 9. BS 812-105.1, Part 105: Methods for Determination of Particle Shape-Section 105.1 Flakiness Index, British Standards Institution, London, 1990.
  • 10. TS EN 1744-1:2009+A1, Agregaların Kimyasal Özellikleri İçin Deneyler-Bölüm 1: Kimyasal Analiz, Türk Standartları Enstitüsü, Ankara, 2013.
  • 11. ASTM C142, Standard Test Method for Clay Lumps and Friable Particles In Aggregates, Americam Society for Testing and Materials, West Conshohocken, 2017.
  • 12. TS EN 1367-2, Agregaların Termal ve Bozunma Özellikleri İçin Deneyler – Bölüm 2: Magnezyum Sülfat Deneyi, Türk Standartları Enstitüsü, Ankara, 2011.
  • 13. TS 1900-1, İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri – Bölüm 1: Fiziksel Özelliklerin Tayini, Türk Standartları Enstitüsü, Ankara, 2015.
  • 14. TS EN 933-9+A1, Agregaların Geometrik Özellikleri İçin Deneyler – Bölüm 9: İnce Tanelerin Tayini İçin Metilen Mavisi Deneyi, Türk Standartları Enstitüsü, Ankara, 2014.
  • 15. AASHTO T 193-10, The California Bearing Ratio, American Association of State Highway and Transportation Officials, Washington, 2012.
  • 16. Lekarp, F., Isacsson, U., and Dawson, A., 2000. “State of Art I: Resilient Responseof Unbound Aggregates,” Journal of Transportation Engineering, ASCE, Vol (1).
  • 17. AASHTO T 307-99. Standard Method of Test for Determining The Resilient Modulus of Soils and Aggregate Materials, American Association of State Highway and Transportation Officials, Washington, 2012.
  • 18. NCHRP (1-28A). Harmonized Test Methods for Laboratory Determination of Resilient Modulus for Flexible Pavement Design (1-28A). National Research Council, Washington, D.C.
  • 19. Arulrajah, A., Disfani, M. M., Horpibulsuk, S., Suksiripattanapong, C., Prongmanee, N., Physical Properties and Shear Strength Responses of Recycled Construction and Demolition Materials in Unbound Pavement Base/Subbase Applications. Construction and Building Materials, 58, 245-257, 2014.
  • 20. Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Bo, M. W., Darmawan, S., Laboratory Evaluation of the Use of Cement-Treated Construction and Demolition Materials in Pavement Base and Subbase Applications. Journal of Materials in Civil Engineering, 27(6), 04014186, 2015.
  • 21. Cai, X., Li, X., Wu, K., Huang, W., Grading Design of Recycled Aggregate Cement-Stabilized Gravel Based on Rotary Compaction. Journal of Highway and Transportation Research and Development, 12(3), 1-6, 2018.
  • 22. Bozyurt, O., Tinjum, J. M., Son, Y., Edil, T. B., Benson, C. H., Resilient Modulus of Recycled Asphalt Pavement and Recycled Concrete Aggregate. Geo-Congress March 25-29, Oakland, California, United States, 2012.
  • 23. Jayakody, S., Gallage, C., Ramanujam, J., Effects of Reclaimed Asphalt Materials on Geotechnical Characteristics of Recycled Concrete Aggregates As a Pavement Material. Road Materials and Pavement Desing. DOI: 10.1080/14680629.2017.1417151, 2017.
  • 24. Tahmoorian, F., Samali, B., Laboratory Investigations on the Utilization of RCA in Asphalt Mixtures. International Journal of Pavement Research and Technology, 11, 627-638, 2018.
  • 25. Gabr, A. R., Cameron, D. A., Properties of Recycled Concrete Aggregate for Unbound Pavement Construction. Journal of Materials in Civil Engineering, 24(6), 754-764, 2012.
  • 26. Jiménez, J. R., Ayuso, J., Agrela, F., Lopez, M., Galvin, A. P., Utilisation of Unbound Recycled Aggregates From Selected CDW in Unpaved Rural Roads. Resources, Conservation and Recycling, 58, 88-97, 2012.
  • 27. Haider, I., Cetin, B., Kaya, Z., Hatipoglu, M., Cetin, A., Ahmet, H. A., Evaluation of the Mechanical Performance of Recycled Concrete Aggregates Used in Highway Base Layers. Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, Atlanta, United States 2014.
  • 28. Kumar, R., Influence of Recycled Coarse Aggregate Derived From Construction and Demolition Waste (CDW) on Abrasion Resistance of Pavement Concrete. Construction and Building Materials, 142, 248-255, 2017.
  • 29. Soleimanbeigi, A. Ve Edil, T. B., Compressibility of Recycled Materials for Use As Highway Embankment Fill. Journal of Geotechnical and Geoenvironmental Engineering, 141, 04015011, 2015.
  • 30. Poon, C. S., Chan, D., Feasible Use of Recycled Concrete Aggregates and Crushed Clay Brick As Unbound Road Sub-Base. Construction and Building Materials, 20, 578-585, 2006.
  • 31. Barbudo, A., Agrela, F., Ayuso, J., Jimenez, J. R., Poon, C. S., Statistical Analysis of Recycled Aggregates Derived From Different Sources for Sub-base Applications. Construction and Building Materials, 28, 129-138, 2012.
  • 32. Kılıç B., Yüksek Lisans Tezi, Tekirdağ Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Tekirdağ, 2020.
  • 33. Arulrajah, A., Piratheepan, J., Ali, M. M. Y., Bo, M. W., Geotechnical Properties of Recycled Concrete Aggregate in Pavement Sub-base Applications. Geotechnical Testing Journal, 35, 1-9, 2012.
  • 34. Disfani, M. M., Arulrajah, A., Haghighi, H., Mohammadinia, A., Horpibulsuk, S., Flexural Beam Fatigue Strength Evalution of Crushed Brick as A Supplementary Material in Cement Stabilized Recycled Concrete Aggregates, Construction and Building Materials, 68, 667-676, 2014.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Burak Kılıç 0000-0002-3729-2313

Perihan Biçer 0000-0002-4966-4719

Proje Numarası NKUBAP.06.YL.19.228
Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 16 Mayıs 2021
Kabul Tarihi 25 Eylül 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 3

Kaynak Göster

APA Kılıç, B., & Biçer, P. (2022). Atık parke taşı malzemesinin plent-miks temel tabakasında kullanımının deneysel olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1309-1324. https://doi.org/10.17341/gazimmfd.937944
AMA Kılıç B, Biçer P. Atık parke taşı malzemesinin plent-miks temel tabakasında kullanımının deneysel olarak incelenmesi. GUMMFD. Şubat 2022;37(3):1309-1324. doi:10.17341/gazimmfd.937944
Chicago Kılıç, Burak, ve Perihan Biçer. “Atık Parke taşı Malzemesinin Plent-Miks Temel tabakasında kullanımının Deneysel Olarak Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, sy. 3 (Şubat 2022): 1309-24. https://doi.org/10.17341/gazimmfd.937944.
EndNote Kılıç B, Biçer P (01 Şubat 2022) Atık parke taşı malzemesinin plent-miks temel tabakasında kullanımının deneysel olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 3 1309–1324.
IEEE B. Kılıç ve P. Biçer, “Atık parke taşı malzemesinin plent-miks temel tabakasında kullanımının deneysel olarak incelenmesi”, GUMMFD, c. 37, sy. 3, ss. 1309–1324, 2022, doi: 10.17341/gazimmfd.937944.
ISNAD Kılıç, Burak - Biçer, Perihan. “Atık Parke taşı Malzemesinin Plent-Miks Temel tabakasında kullanımının Deneysel Olarak Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/3 (Şubat 2022), 1309-1324. https://doi.org/10.17341/gazimmfd.937944.
JAMA Kılıç B, Biçer P. Atık parke taşı malzemesinin plent-miks temel tabakasında kullanımının deneysel olarak incelenmesi. GUMMFD. 2022;37:1309–1324.
MLA Kılıç, Burak ve Perihan Biçer. “Atık Parke taşı Malzemesinin Plent-Miks Temel tabakasında kullanımının Deneysel Olarak Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 37, sy. 3, 2022, ss. 1309-24, doi:10.17341/gazimmfd.937944.
Vancouver Kılıç B, Biçer P. Atık parke taşı malzemesinin plent-miks temel tabakasında kullanımının deneysel olarak incelenmesi. GUMMFD. 2022;37(3):1309-24.