Derleme
BibTex RIS Kaynak Göster

TAHIL VE BAKLİYAT ESASLI GIDALARDA FERMANTASYON İŞLEMİNİN BESİNSEL ÖZELLİKLER VE BİYOAKTİF BİLEŞENLER ÜZERİNE ETKİSİ

Yıl 2018, , 163 - 173, 19.01.2018
https://doi.org/10.15237/gida.335154

Öz

Birçok ülkede, tahılları veya tahıl ve bakliyat
karışımlarını içeren, doğal fermantasyon ile veya starter kültür kullanılarak
üretilebilen çok sayıda geleneksel fermente gıda bulunmaktadır. Genellikle
karmaşık bir mikrofloraya sahip olan bu ürünlerde, fermantasyon işleminin
ürünün besinsel kalitesi ve biyoaktif bileşenleri üzerinde oldukça etkili
olduğu bilinmektedir. Tahıl tanesinin doğal mikroflorasına bağlı olarak, bu
ürünlerde genellikle laktik asit bakterileri tarafından gerçekleştirilen laktik
asit fermantasyonu ve mayalar tarafından gerçekleştirilen etil alkol
fermantasyonu görülmektedir. Son yıllarda yapılan çalışmalarda, tahıl ve
bakliyatlara uygulanan fermantasyon işlemi ile, bu gıdaların elzem aminoasit ve
vitamin miktarları ile sindirilebilirliklerinin arttığı ortaya konmuştur.
Ayrıca; fermantasyon sırasında; fenolik asitler, flavonoidler, folik asit,
lignanlar ve gama-aminobutirik asit gibi önemli biyoaktif bileşiklerin kayda
değer ölçüde arttığı rapor edilmiştir.

Kaynakça

  • Achi, O.K., Ukwuru, M. (2015). Cereal-Based Fermented Foods of Africa as Functional Foods. Int J Microbiol Appl, 2(4): 71-83.
  • Adeyemo, S.M., Onilude, A.A. (2013). Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals. Nig Food J, 31(2): 84-90.
  • Anson, N.M., Selinheimo, E., Havenaar, R., Aura, A.M., Mattila, I., Lehtinen, P., Bast, A., Poutanen, K., Haenen, G.R. (2009). Bioprocessing of Wheat Bran Improves in vitro Bioaccessibility and Colonic Metabolism of Phenolic Compounds. J Agricult Food Chem, 57: 6148-6155.
  • Bartkiene, E., Skabeikyte, E., Krungleviciute, V., Jakobsone, I., Bobere, N., Bartkevics, V., Juodeikiene, G. (2015). The influence of fermentation on the content of alkylresorcinols and lignans in plant products. The Open Biotech J, 9: 31-38.
  • Bartkiene, E., Juodeikiene, G., Basinskiene, L. (2012). In vitro production of plant lignans from cereal products in relationship with constituents of non-starch polysaccharides. Food Technol Biotechnol, 50(2): 237-245.
  • Bartłomiej, S., Justyna, R.K., Ewa, N. (2011). Bioactive compounds in cereal grains – occurrence, structure, technological significance and nutritional benefits – a review. Food Sci Technol Int, 18(6): 559–568.
  • Batra, P., Sharma, A.K. (2013). Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech, 3: 439-459.
  • Bhanwar, S., Bamnia, M., Ghosh, M., Ganguli, A. (2013). Use of Lactococcus lactis to enrich sourdough bread with γ-aminobutyric acid. Int J Food Sci Nutr, 64(1): 77-81.
  • Capozzi, V., Russo, P., Dueňas, M.T., Lopez, P., Spano, G. (2012). Lactic acid bacteria producing B-group vitamins: A great potential for functional cereal products. Appl Microbiol Biotechnol, 96: 1383-1394.
  • Chavan, J.K., Kadam, S.S., Beuchat, L.R. (1989). Nutritional improvement of cereals by fermentation. Critic Rev Food Sci Nutr, 28(5): 349-400.
  • Ciesarová, Z., Mikušová, L., Magala, M., Kohajdová, Z., Karovičová, J. (2017). Nonwheat cereal-fermented-derived products. In: Fermented foods in health and disease prevention, Frias, J., Martinez-Villaluenga, C., Peñas, E. (eds), Elsevier, Amsterdam, pp. 417-432.
  • Coda, R., Rizzello, C.G., Gobbetti, M. (2010). Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int J Food Microbiol, 137: 236-245.
  • Da Silva L.H., Celeghini, R.M.S., Chang, Y.K. (2011). Effect of the fermentation of whole soybean flour on the conversion of isoflavones from glycosides to aglycones. Food Chem, 128: 640-644.
  • Dhakal, R., Bajpai, V.K., Baek, K.H. (2012). Production of Gaba (γ – aminobutyric acid) by microorganisms: a review. Brazilian J Microbiol, 43(4): 1230-1241.
  • Diana, M., Quilez, J., Rafecas, M. (2014). Gamma-aminobutyric acid as a bioactive compound in foods: a review. J Func Foods, 10: 407-420.
  • Ðordević, T.M., Šiler-Marinković, S.S., Dimitrijević-Branković, S.I. (2010). Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem, 119: 957-963.
  • Durazzo, A., Zaccaria, M., Polito, A., Maiani, G., Carcea, M. (2013). Lignan content in cereals, buckwheat and derived foods. Foods, 2: 53-63.
  • Gani, A., Wani, S.M., Masoodi, F.A., Hameed, G. (2012). Whole-grain cereal bioactive compounds and their health benefits: a review. J Food Process Technol, 3(3): 1-10.
  • Gerez, C.L., Torres, M.J., Font de Valdez, G., Rollán, G. (2013). Control of spoilage fungi by lactic acid bacteria. Biological Cont, 64: 231-237.
  • Guo, W., Beta, T. (2013). Phenolic acid composition and antioxidant potential of insoluble and soluble dietary fibre extracts derived from select whole-grain cereals, Food Res Int, 51(2): 518-525.
  • Gupta, R.K., Gangoliya, S.S., Singh, N.K. (2013). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol, 52(2): 676-684.
  • Hassani, A., Procopio, S., Becker, T. (2016). Influence of malting and lactic acid fermentation on functional bioactive components in cereal-based raw materials: a review paper. Int J Food Sci Technol, 51: 14–22.
  • Hayes, M., Garcia-Vaquero, M. (2016). Bioactive Compounds from Fermented Food Products. In: Novel Food Fermentation Technologies, Ojha, S.K., Tiwari, B.K. (eds), Springer, Switzerland, pp. 293-310.
  • Hole, A.S., Rud, I., Grimmer, S., Sigl, S., Narvhus, J., Sahlstrøm, S. (2012). Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J Agricult Food Chem, 60: 6369-6375.
  • Karaçıl, M.Ş., Tek, N.A. (2013). Dünyada üretilen fermente ürünler: tarihsel süreç ve sağlık ile ilişkileri. Uludağ Üniv Ziraat Fak Der, 27(2): 163-173.
  • Kariluoto, S., Aittamaa, M., Korhola, M., Salovaara, H., Vahteristo, L., Piironen, V. (2005). Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int J Food Microbiol, 106(2): 137–143.
  • Katina, K., Laitila, A., Juvonen, R, Liukkonen, K.H., Kariluoto, S., Piironen, V., Landberg, R., Aman, P., Poutanen, K. (2007). Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol, 24: 175-186.
  • Katina, K., Juvonen, R., Laitila, A., Flander, L., Nordlund, E., Kariluoto, S., Piironen, V., Poutanen, K. (2012). Fermented wheat bran as a functional ingredient in baking. Cereal Chem, 89(2): 126-134.
  • Keservani, R.K., Sharma, A.K. (2014). Flavonoids: emerging trends and potential health benefits. J Chinese Pharmac Sci, 23(12): 815-822.
  • Khlestkina, E.K. (2013). The adaptive role of flavonoids: emphasis on cereals. Cereal Res Commun, 41(2): 185-198.
  • Kockova, M., Dilongová, M., Hybenová, E., Valík, L. (2013). Evaluation of cereals and pseudocereals suitability for the development of new probiotic foods. J Chem, Article ID 414303.
  • Kohajdová, Z. (2017). Fermented Cereal Products. In: Current Developments in Biotechnology and Bioengineering, Pandey, A., Sanroman, M.A., Du, G., Soccol, C.R., Dussap, C.G. (eds). Elsevier, Amsterdam, pp. 91-117.
  • Kohajdová, Z., Karovičová, J. (2007). Fermentation of cereals for specific purpose. J Food Nutr Res, 46(2): 51-57.
  • Kozlowska, A., Szostak-Wegierek, D. (2014). Flavonoids - food sources and health benefits. Annals of the National Institute of Hygiene, 65(2): 79-85.
  • Kumar, S., Pandey, A.K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World J, Article ID 162750.
  • Liptáková, D., Matejčeková, Z., Valík, L. (2017). Lactic acid bacteria and fermentation of cereals and pseudocereals. In: Fermentation Processes, Jozala, A.F. (ed). Intech Publisher, DOI:10.5772/65459. https://www.intechopen.com/books/fermentation-processes/lactic-acid-bacteria-and-fermentation-of-cereals-and-pseudocereals
  • Liu, Z., Liu, Y., Pu, Z., Wang, J., Zheng, Y., Li, Y., Wei, Y. (2013). Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnol Lett, 35(11): 1765-1780.
  • Martiän-Cabrejas, M.A., Sanfiz, B., Vidal, A. (2004). Effect of fermentation and autoclaving on dietary fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.). J Agricult Food Chem, 52: 261−266.
  • Masisi, K., Beta, T., Moghadasian, M.H. (2016). Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem, 196: 90-97.
  • Mukhametzyanova, A.D., Akhmetova, A.I., Sharipova, M.R. (2012). Microorganisms as phytase producers. Microbiology, 81(3): 267-275.
  • Nagaoka, H. (2005). Treatment of germinated wheat to ıncrease levels of GABA and IP6 catalyzed by endogenous enzymes. Biotechnol Progress, 21: 405-410.
  • Ojha, K.S., Tiwari, B.K. (2016). Novel food fermentation Technologies. In: Novel Food Fermentation Technologies, Ojha, K.S., Tiwari B.K. (Eds). Springer, Switzerland, 1-2.
  • Omary, M.B., Fong, C., Rothschild, J., Finney, P. (2012). Effects of germination on the nutritional profile of gluten-free cereals and pseudocereals: a review, Cereal Chem, 89(1): 1-14.
  • Pallin, A. (2015). Fermentation of barley flour with Lactobacillus reuteri. Swedish University of Agricultural Sciences, Licentiate Thesis, Upsala, Sweden, 60p.
  • Pallin, A., Agback, P., Jonsson, H., Roos, S. (2016). Evaluation of growth, metabolism and production of potentially bioactive components during fermentation of barley with Lactobacillus reuteri. Food Microbiology, 57: 159-171.
  • Pranoto, Y., Anggrahini, S., Efendi, Z. (2013). Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Biosci, 2: 46-52.
  • Reale, A., Konietzny, U., Coppola, R., Sorrentino, E., Greiner, R. (2007). The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation, J Agricult Food Chem, 55: 2993-2997.
  • Sarwar, M.H., Sarwar, M.F., Sarwar, M., Qadri, N.A., Moghal, S. (2013). The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J Cereals Oil Seeds, 4(3): 32-35.
  • Sommano, S. (2014). Effect of food processing on bioactive compounds. In: Advances in Food Science and Nutrition. Visakh, P.M., Iturriaga, L.B., Ribotta, P.D. (Eds). Vol 2, Scrivener Publishing, pp. 361-390.
  • Svensson, L., Sekwati-Monang, B., Lutz, D.L., Schieber, A., Gänzle, M.G. (2010). Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor L.) Moench). J Agricult Food Sci, 58: 9214-9220.
  • Todorov, S.D., Holzapfel, W.H. (2015). Traditional cereal fermented foods as sources of functional microorganisms. In: Advances in Fermented Foods and Beverages, Holzapfel, W (ed), Cambridge: Woodhead Publishing, 123-153.
  • Wang, T., He, F., Chen, G. (2014a). Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J Funct Foods, 7: 101-111.
  • Wang, C.Y., Wu, S.J., Shyu, Y.T. (2014b). Antioxidant properties of certain cereals as affected by food-grade bacteria fermentation. J Biosci Bioeng, 117(4): 449-456.
  • Weston, L.A., Mathesius, U. (2013). Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecology, 39(2): 283-297.

EFFECT OF FERMENTATION PROCESS ON NUTRITIONAL PROPERTIES AND BIOACTIVE COMPOUNDS OF CEREAL AND LEGUME BASED FOODS

Yıl 2018, , 163 - 173, 19.01.2018
https://doi.org/10.15237/gida.335154

Öz

In many countries, there are a
lot of traditional fermented foods containing cereals or legumes which are
produced by spontaneous fermentation or by using starter culture. It is known
that fermentation process is very effective on nutritional value and bioactive
compounds of these products which usually have a complex micro-flora. According
to the natural micro-flora of the cereal grain, lactic acid fermentation and
ethyl alcohol fermentation occurs in these products accompanied by lactic acid
bacteria and yeasts, respectively. It was demonstrated in recent studies that
essential amino acid content, vitamin content and digestibility of cereal and
legume based foods increased by fermentation process. In addition, it was
reported that contents of important bioactive compounds such as phenolic acids,
flavonoids, folic acid, lignans and gamma-aminobutyric acid increased considerably
during fermentation.

Kaynakça

  • Achi, O.K., Ukwuru, M. (2015). Cereal-Based Fermented Foods of Africa as Functional Foods. Int J Microbiol Appl, 2(4): 71-83.
  • Adeyemo, S.M., Onilude, A.A. (2013). Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals. Nig Food J, 31(2): 84-90.
  • Anson, N.M., Selinheimo, E., Havenaar, R., Aura, A.M., Mattila, I., Lehtinen, P., Bast, A., Poutanen, K., Haenen, G.R. (2009). Bioprocessing of Wheat Bran Improves in vitro Bioaccessibility and Colonic Metabolism of Phenolic Compounds. J Agricult Food Chem, 57: 6148-6155.
  • Bartkiene, E., Skabeikyte, E., Krungleviciute, V., Jakobsone, I., Bobere, N., Bartkevics, V., Juodeikiene, G. (2015). The influence of fermentation on the content of alkylresorcinols and lignans in plant products. The Open Biotech J, 9: 31-38.
  • Bartkiene, E., Juodeikiene, G., Basinskiene, L. (2012). In vitro production of plant lignans from cereal products in relationship with constituents of non-starch polysaccharides. Food Technol Biotechnol, 50(2): 237-245.
  • Bartłomiej, S., Justyna, R.K., Ewa, N. (2011). Bioactive compounds in cereal grains – occurrence, structure, technological significance and nutritional benefits – a review. Food Sci Technol Int, 18(6): 559–568.
  • Batra, P., Sharma, A.K. (2013). Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech, 3: 439-459.
  • Bhanwar, S., Bamnia, M., Ghosh, M., Ganguli, A. (2013). Use of Lactococcus lactis to enrich sourdough bread with γ-aminobutyric acid. Int J Food Sci Nutr, 64(1): 77-81.
  • Capozzi, V., Russo, P., Dueňas, M.T., Lopez, P., Spano, G. (2012). Lactic acid bacteria producing B-group vitamins: A great potential for functional cereal products. Appl Microbiol Biotechnol, 96: 1383-1394.
  • Chavan, J.K., Kadam, S.S., Beuchat, L.R. (1989). Nutritional improvement of cereals by fermentation. Critic Rev Food Sci Nutr, 28(5): 349-400.
  • Ciesarová, Z., Mikušová, L., Magala, M., Kohajdová, Z., Karovičová, J. (2017). Nonwheat cereal-fermented-derived products. In: Fermented foods in health and disease prevention, Frias, J., Martinez-Villaluenga, C., Peñas, E. (eds), Elsevier, Amsterdam, pp. 417-432.
  • Coda, R., Rizzello, C.G., Gobbetti, M. (2010). Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int J Food Microbiol, 137: 236-245.
  • Da Silva L.H., Celeghini, R.M.S., Chang, Y.K. (2011). Effect of the fermentation of whole soybean flour on the conversion of isoflavones from glycosides to aglycones. Food Chem, 128: 640-644.
  • Dhakal, R., Bajpai, V.K., Baek, K.H. (2012). Production of Gaba (γ – aminobutyric acid) by microorganisms: a review. Brazilian J Microbiol, 43(4): 1230-1241.
  • Diana, M., Quilez, J., Rafecas, M. (2014). Gamma-aminobutyric acid as a bioactive compound in foods: a review. J Func Foods, 10: 407-420.
  • Ðordević, T.M., Šiler-Marinković, S.S., Dimitrijević-Branković, S.I. (2010). Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem, 119: 957-963.
  • Durazzo, A., Zaccaria, M., Polito, A., Maiani, G., Carcea, M. (2013). Lignan content in cereals, buckwheat and derived foods. Foods, 2: 53-63.
  • Gani, A., Wani, S.M., Masoodi, F.A., Hameed, G. (2012). Whole-grain cereal bioactive compounds and their health benefits: a review. J Food Process Technol, 3(3): 1-10.
  • Gerez, C.L., Torres, M.J., Font de Valdez, G., Rollán, G. (2013). Control of spoilage fungi by lactic acid bacteria. Biological Cont, 64: 231-237.
  • Guo, W., Beta, T. (2013). Phenolic acid composition and antioxidant potential of insoluble and soluble dietary fibre extracts derived from select whole-grain cereals, Food Res Int, 51(2): 518-525.
  • Gupta, R.K., Gangoliya, S.S., Singh, N.K. (2013). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol, 52(2): 676-684.
  • Hassani, A., Procopio, S., Becker, T. (2016). Influence of malting and lactic acid fermentation on functional bioactive components in cereal-based raw materials: a review paper. Int J Food Sci Technol, 51: 14–22.
  • Hayes, M., Garcia-Vaquero, M. (2016). Bioactive Compounds from Fermented Food Products. In: Novel Food Fermentation Technologies, Ojha, S.K., Tiwari, B.K. (eds), Springer, Switzerland, pp. 293-310.
  • Hole, A.S., Rud, I., Grimmer, S., Sigl, S., Narvhus, J., Sahlstrøm, S. (2012). Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J Agricult Food Chem, 60: 6369-6375.
  • Karaçıl, M.Ş., Tek, N.A. (2013). Dünyada üretilen fermente ürünler: tarihsel süreç ve sağlık ile ilişkileri. Uludağ Üniv Ziraat Fak Der, 27(2): 163-173.
  • Kariluoto, S., Aittamaa, M., Korhola, M., Salovaara, H., Vahteristo, L., Piironen, V. (2005). Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int J Food Microbiol, 106(2): 137–143.
  • Katina, K., Laitila, A., Juvonen, R, Liukkonen, K.H., Kariluoto, S., Piironen, V., Landberg, R., Aman, P., Poutanen, K. (2007). Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol, 24: 175-186.
  • Katina, K., Juvonen, R., Laitila, A., Flander, L., Nordlund, E., Kariluoto, S., Piironen, V., Poutanen, K. (2012). Fermented wheat bran as a functional ingredient in baking. Cereal Chem, 89(2): 126-134.
  • Keservani, R.K., Sharma, A.K. (2014). Flavonoids: emerging trends and potential health benefits. J Chinese Pharmac Sci, 23(12): 815-822.
  • Khlestkina, E.K. (2013). The adaptive role of flavonoids: emphasis on cereals. Cereal Res Commun, 41(2): 185-198.
  • Kockova, M., Dilongová, M., Hybenová, E., Valík, L. (2013). Evaluation of cereals and pseudocereals suitability for the development of new probiotic foods. J Chem, Article ID 414303.
  • Kohajdová, Z. (2017). Fermented Cereal Products. In: Current Developments in Biotechnology and Bioengineering, Pandey, A., Sanroman, M.A., Du, G., Soccol, C.R., Dussap, C.G. (eds). Elsevier, Amsterdam, pp. 91-117.
  • Kohajdová, Z., Karovičová, J. (2007). Fermentation of cereals for specific purpose. J Food Nutr Res, 46(2): 51-57.
  • Kozlowska, A., Szostak-Wegierek, D. (2014). Flavonoids - food sources and health benefits. Annals of the National Institute of Hygiene, 65(2): 79-85.
  • Kumar, S., Pandey, A.K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World J, Article ID 162750.
  • Liptáková, D., Matejčeková, Z., Valík, L. (2017). Lactic acid bacteria and fermentation of cereals and pseudocereals. In: Fermentation Processes, Jozala, A.F. (ed). Intech Publisher, DOI:10.5772/65459. https://www.intechopen.com/books/fermentation-processes/lactic-acid-bacteria-and-fermentation-of-cereals-and-pseudocereals
  • Liu, Z., Liu, Y., Pu, Z., Wang, J., Zheng, Y., Li, Y., Wei, Y. (2013). Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnol Lett, 35(11): 1765-1780.
  • Martiän-Cabrejas, M.A., Sanfiz, B., Vidal, A. (2004). Effect of fermentation and autoclaving on dietary fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.). J Agricult Food Chem, 52: 261−266.
  • Masisi, K., Beta, T., Moghadasian, M.H. (2016). Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem, 196: 90-97.
  • Mukhametzyanova, A.D., Akhmetova, A.I., Sharipova, M.R. (2012). Microorganisms as phytase producers. Microbiology, 81(3): 267-275.
  • Nagaoka, H. (2005). Treatment of germinated wheat to ıncrease levels of GABA and IP6 catalyzed by endogenous enzymes. Biotechnol Progress, 21: 405-410.
  • Ojha, K.S., Tiwari, B.K. (2016). Novel food fermentation Technologies. In: Novel Food Fermentation Technologies, Ojha, K.S., Tiwari B.K. (Eds). Springer, Switzerland, 1-2.
  • Omary, M.B., Fong, C., Rothschild, J., Finney, P. (2012). Effects of germination on the nutritional profile of gluten-free cereals and pseudocereals: a review, Cereal Chem, 89(1): 1-14.
  • Pallin, A. (2015). Fermentation of barley flour with Lactobacillus reuteri. Swedish University of Agricultural Sciences, Licentiate Thesis, Upsala, Sweden, 60p.
  • Pallin, A., Agback, P., Jonsson, H., Roos, S. (2016). Evaluation of growth, metabolism and production of potentially bioactive components during fermentation of barley with Lactobacillus reuteri. Food Microbiology, 57: 159-171.
  • Pranoto, Y., Anggrahini, S., Efendi, Z. (2013). Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Biosci, 2: 46-52.
  • Reale, A., Konietzny, U., Coppola, R., Sorrentino, E., Greiner, R. (2007). The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation, J Agricult Food Chem, 55: 2993-2997.
  • Sarwar, M.H., Sarwar, M.F., Sarwar, M., Qadri, N.A., Moghal, S. (2013). The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J Cereals Oil Seeds, 4(3): 32-35.
  • Sommano, S. (2014). Effect of food processing on bioactive compounds. In: Advances in Food Science and Nutrition. Visakh, P.M., Iturriaga, L.B., Ribotta, P.D. (Eds). Vol 2, Scrivener Publishing, pp. 361-390.
  • Svensson, L., Sekwati-Monang, B., Lutz, D.L., Schieber, A., Gänzle, M.G. (2010). Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor L.) Moench). J Agricult Food Sci, 58: 9214-9220.
  • Todorov, S.D., Holzapfel, W.H. (2015). Traditional cereal fermented foods as sources of functional microorganisms. In: Advances in Fermented Foods and Beverages, Holzapfel, W (ed), Cambridge: Woodhead Publishing, 123-153.
  • Wang, T., He, F., Chen, G. (2014a). Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J Funct Foods, 7: 101-111.
  • Wang, C.Y., Wu, S.J., Shyu, Y.T. (2014b). Antioxidant properties of certain cereals as affected by food-grade bacteria fermentation. J Biosci Bioeng, 117(4): 449-456.
  • Weston, L.A., Mathesius, U. (2013). Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecology, 39(2): 283-297.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Diğer ID GD17080
Bölüm Makaleler
Yazarlar

Erkan Yalçın

Seda Karasu Yalçın

Ezgi Karademir Bu kişi benim

Yayımlanma Tarihi 19 Ocak 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Yalçın, E., Karasu Yalçın, S., & Karademir, E. (2018). TAHIL VE BAKLİYAT ESASLI GIDALARDA FERMANTASYON İŞLEMİNİN BESİNSEL ÖZELLİKLER VE BİYOAKTİF BİLEŞENLER ÜZERİNE ETKİSİ. Gıda, 43(1), 163-173. https://doi.org/10.15237/gida.335154
AMA Yalçın E, Karasu Yalçın S, Karademir E. TAHIL VE BAKLİYAT ESASLI GIDALARDA FERMANTASYON İŞLEMİNİN BESİNSEL ÖZELLİKLER VE BİYOAKTİF BİLEŞENLER ÜZERİNE ETKİSİ. GIDA. Ocak 2018;43(1):163-173. doi:10.15237/gida.335154
Chicago Yalçın, Erkan, Seda Karasu Yalçın, ve Ezgi Karademir. “TAHIL VE BAKLİYAT ESASLI GIDALARDA FERMANTASYON İŞLEMİNİN BESİNSEL ÖZELLİKLER VE BİYOAKTİF BİLEŞENLER ÜZERİNE ETKİSİ”. Gıda 43, sy. 1 (Ocak 2018): 163-73. https://doi.org/10.15237/gida.335154.
EndNote Yalçın E, Karasu Yalçın S, Karademir E (01 Ocak 2018) TAHIL VE BAKLİYAT ESASLI GIDALARDA FERMANTASYON İŞLEMİNİN BESİNSEL ÖZELLİKLER VE BİYOAKTİF BİLEŞENLER ÜZERİNE ETKİSİ. Gıda 43 1 163–173.
IEEE E. Yalçın, S. Karasu Yalçın, ve E. Karademir, “TAHIL VE BAKLİYAT ESASLI GIDALARDA FERMANTASYON İŞLEMİNİN BESİNSEL ÖZELLİKLER VE BİYOAKTİF BİLEŞENLER ÜZERİNE ETKİSİ”, GIDA, c. 43, sy. 1, ss. 163–173, 2018, doi: 10.15237/gida.335154.
ISNAD Yalçın, Erkan vd. “TAHIL VE BAKLİYAT ESASLI GIDALARDA FERMANTASYON İŞLEMİNİN BESİNSEL ÖZELLİKLER VE BİYOAKTİF BİLEŞENLER ÜZERİNE ETKİSİ”. Gıda 43/1 (Ocak 2018), 163-173. https://doi.org/10.15237/gida.335154.
JAMA Yalçın E, Karasu Yalçın S, Karademir E. TAHIL VE BAKLİYAT ESASLI GIDALARDA FERMANTASYON İŞLEMİNİN BESİNSEL ÖZELLİKLER VE BİYOAKTİF BİLEŞENLER ÜZERİNE ETKİSİ. GIDA. 2018;43:163–173.
MLA Yalçın, Erkan vd. “TAHIL VE BAKLİYAT ESASLI GIDALARDA FERMANTASYON İŞLEMİNİN BESİNSEL ÖZELLİKLER VE BİYOAKTİF BİLEŞENLER ÜZERİNE ETKİSİ”. Gıda, c. 43, sy. 1, 2018, ss. 163-7, doi:10.15237/gida.335154.
Vancouver Yalçın E, Karasu Yalçın S, Karademir E. TAHIL VE BAKLİYAT ESASLI GIDALARDA FERMANTASYON İŞLEMİNİN BESİNSEL ÖZELLİKLER VE BİYOAKTİF BİLEŞENLER ÜZERİNE ETKİSİ. GIDA. 2018;43(1):163-7.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/