Derleme
BibTex RIS Kaynak Göster

MİKROBİYEL KSİLİTOL ÜRETİMİNDE HEMİSELÜLOZİK HİDROLİZATLARIN KULLANIMI

Yıl 2018, , 151 - 162, 19.01.2018
https://doi.org/10.15237/gida.342722

Öz

Ksilitol, sakkaroza benzer tatlılık derecesi, düşük
kalori ve glisemik indeks değerlerinin yanısıra antikariyojenik özelliği
sayesinde gıda endüstrisinde kullanılan şeker alkolleri arasında yer
almaktadır. Ksilitol üretimi, günümüzde oldukça yüksek maliyetler gerektiren
kimyasal proseslerle sağlanmaktadır. Diğer taraftan, üretim maliyetlerini
azaltma potansiyeli değerlendirildiğinde, son yıllarda yapılan çalışmalar
mikrobiyel ksilitol üretimi üzerine odaklanmıştır. Mikrobiyel ksilitol üretimi
çalışmalarında yaygın olarak mayalar kullanılmaktadır. Çalışmalarda
fermantasyon ortamı olarak, çeşitli lignoselülozik materyallerden hazırlanan ve
ksilitol üretimi için gerekli substrat olan ksilozu içeren hemiselülozik
hidrolizatlar kullanılmaktadır. Bu derleme, ksilitol ve fermantasyon yolu ile
üretimi, ksilitol üretiminde doğal fermantasyon ortamı olarak kullanılan
hemiselülozik hidrolizatların hazırlığı ve bu konuda son yıllardaki gelişmeleri
içermektedir.

Kaynakça

  • Albuquerque, T.L.d., Silva, I.J.d., Macedo, G.R.d., Rocha, M.V.P. (2014). Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem, 49(11): 1779-1789.
  • Albuquerque, T.L.d., Gomes, S.D.L., Marques, J.E., Silva, I.J.d., Rocha, M.V.P. (2015). Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catal Today, 255: 33-40.
  • Arrizon, J., Mateos, J.C., Sandoval, G., Aguilar, B., Solis, J., Aguilar, M.G. (2012). Bioethanol and xylitol production from different lignocellulosic hydrolysates by sequential fermentation. J Food Process Eng, 35(3): 437-454.
  • Camargo, D., Sene, L., Variz, D.I.L.S., Felipe, M.G.A. (2015). Xylitol bioproduction in hemicellulosic hydrolysate obtained from sorghum forage biomass. Appl Biochem Biotechnol, 175(8): 3628-3642.
  • Castañón Rodríguez, J.F., Portilla Arias, J.A., Aguilar Uscanga, B.R., Aguilar Uscanga MG (2015). Effects of oxygen and nutrients on xylitol and ethanol production in sugarcane bagasse hydrolyzates. Food Sci Biotechnol, 24(4): 1381-1389.
  • Chandel, A.K., Silva, S.S.d., Singh, O.V. (2013). Detoxification of lignocellulosic hydrolysates: biochemical and metabolic engineering toward white biotechnology. BioEnerg Res, 6(1): 388-401.
  • Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H., Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol, 160: 196-206.
  • Cheng, K.K., Ling, H.Z., Zhang, J.A., Ping, W.X., Huang, W., Ge, J.P., Xu, J.M. (2010). Strain isolation and study on process parameters for xylose-to-xylitol bioconversion. Biotechnol Biotec Eq, 24(1): 1606-1611.
  • Dalli, S.S., Patel, M., Rakshit, S.K. (2017). Development of evaluation of poplar hemicellulosic prehydrolysate upstream processes for the enhanced fermentative production of xylitol. Biomass Bioenerg, 105: 402-410.
  • Dasgupta, D., Bandhu, S., Adhikari, D.K., Ghosh, D. (2017). Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiol Res, 197: 9-21.
  • Deng, L., Wang, Y., Zhang, Y., Ma, R. (2007). The enhancement of ammonia pretreatment on the fermentation of rice straw hydrolysate to xylitol. J Food Biochem, 31(2): 195-205.
  • Eryaşar, K., Karasu Yalçın, S. (2016). Evaluation of some lignocellulosic byproducts of food industry for microbial xylitol production by Candida tropicalis. 3 Biotech, 6: 202.
  • Grembecka, M. (2015). Sugar alcohols-their role in modern world of sweeteners: a review. Eur Food Res Technol, 241(1): 1-14.
  • Guamán Burneo, M.C., Dussán, K.J., Cadete, R.M., Cheab, M.A.M., Portero, P., Carvajal Barriga, E.J., Silva, S.S., Rosa, C.A. (2015). Xylitol production by yeasts isolated from rotting wood in the Gálapagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov. A van Leeuw J Microb, 108(4): 919-931.
  • Guo, X., Zhang, R., Li, Z., Dai, D., Li, C., Zhou, X. (2013). A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresource Technol, 128: 547-552.
  • Gupta, R., Gautam, S., Shukla, R., Kuhad, R.C. (2017). Study of charcoal detoxification of acid hydrolysate from corncob and its fermentation to xylitol. J Environ Chem Eng, 5(5): 4573-4582.
  • Hernández Pérez, A.F., Costa, I.A.L., Silva, D.D.V., Dussán, K.J., Villela, T.R., Canettieri, E.V., Carvalho, J.A., Neto, T.G.S., Felipe, M.G.A. (2016). Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production. Bioresource Technol, 200: 1085-1088.
  • Jain, H., Mulay, S. (2014). A review on different modes and methods for yielding a pentose sugar: xylitol. Int J Food Sci Nutr, 65(2): 135-143.
  • Jeon, Y.J., Shin, H.S., Rogers, P.L. (2011). Xylitol production from a mutant strain of Candida tropicalis. Lett Appl Microbiol, 53(1): 106-113.
  • Jönsson, L.J., Martín, C. (2016). Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technol, 199: 103-112.
  • Kamat, S., Gaikwad, S., Ravi Kumar, A., Gade, W.N. (2013). Xylitol production by Cyberlindnera (Williopsis) saturnus, a tropical mangrove yeast from xylose and corn cob hydrolysate. J Appl Microbiol, 115(6): 1357-1367.
  • Kim, S.H., Yun, J.Y., Kim, S.G., Seo, J.H., Park, J.B. (2010). Production of xylitol from D-xylose and glucose with recombinant Corynebacterium glutamicum. Enzyme Microb Technol, 46(5): 366-371.
  • Li, M., Meng, X., Diao, E., Du, F. (2012). Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biot, 87(3): 387–392.
  • Li, Z., Qu, H., Li, C., Zhou, X. (2013). Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations. Bioresource Technol, 149: 413-419.
  • Lourenço, M.V.M., Dini Andreote, F., Aguilar Vildoso, C.I., Basso, L.C. (2014). Biotechnological potential of Candida spp. for the bioconversion of D-xylose to xylitol. Afr J Microbiol Res, 8(20): 2030-2036.
  • Mateo, S., Roberto, I.C., Sánchez, S., Moya, A.J. (2013). Detoxification of hemicellulosic hydrolyzate from olive tree pruning residue. Ind Crop Prod, 49: 196-203.
  • Mateo, S., Puentes, J.G., Roberto, I.C., Sánchez, S., Moya, A.J. (2014). Optimization of acid hydrolysis of olive tree pruning residue. Fermentation with Candida guilliermondii. Biomass Bioenerg, 69: 39-46.
  • Misra, S., Raghuwanshi, S., Saxena, R.K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohyd Polym, 92(2): 1596-1601.
  • Miura, M., Watanabe, I., Shimotori, Y., Aoyama, M., Kojima, Y., Kato, Y. (2013). Microbial conversion of bamboo hemicellulose hydrolyzate to xylitol. Wood Sci Technol, 47: 515-522.
  • Miura, M., Shimotori, Y., Nakatani, H., Harada, A., Aoyama, M. (2015). Bioconversion of birch wood hemicellulose hydrolyzate to xylitol. Appl Biochem Biotech, 176: 947-955.
  • Mohamad, N.L., Mustapa Kamal, S.M., Mokhtar, M.N. (2015). Xylitol biological production: a review of recent studies. Food Rev Int, 31(1): 74-89.
  • Mohamad, N.L., Mustapa Kamal, S.M., Mokhtar, M.N., Husain S.A., Abdullah, N. (2016). Dynamic mathematical modelling of reaction kinetics for xylitol fermentation using Candida tropicalis. Biochem Eng J, 111: 10-17.
  • Mussatto, S.I., Roberto, I.C. (2008). Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem, 43(5): 540-546.
  • Pal, S., Choudhary, V., Kumar, A., Biswas, D., Mondal, A.K., Sahoo, D.K. (2013). Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresource Technol, 147: 449-455.
  • Pérez Bibbins, B., Torrado Agrasar, A., Pérez Rodríguez, N., Aguilar Uscanga, M.G., Domínguez, J.M. (2015). Evaluation of the liquid, solid and total fractions of beer, cider and wine lees as economic nutrient for xylitol production. J Chem Technol Biot, 90(6): 1027-1039.
  • Ping, Y., Ling, H.Z., Song, G., Ge, J.P. (2013). Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem Eng J, 75: 86-91.
  • Rafiqul, I.S.M., Mimi Sakinah, A.M. (2013). Processes for the production of xylitol- a review. Food Rev Int, 29(2): 127-156.
  • Rafiqul, I.S.M., Mimi Sakinah, A.M., Zularisam, A.W. (2015). Inhibition by toxic compounds in the hemicellulosic hydrolysates on the activity of xylose reductase from Candida tropicalis. Biotechnol Lett, 37: 191-196.
  • Rao, L.V., Goli, J.K., Gentela, J., Koti, S. (2016). Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresource Technol, 213:299-310.
  • Rambo, M.K.D., Bevilaqua, D.B., Brenner, C.G.B., Martins, A.F., Mario, D.N., Alves, S.H., Mallmann, C.A. (2013). Xylitol from rice husks by acid hydrolysis and Candida yeast fermentation. Quim Nova, 36(5): 634-639.
  • Rivas, B., Torrado, A., Rivas, S., Moldes, A.B., Domínguez, J.M. (2007). Simultaneous lactic acid and xylitol production from vine trimming wastes. J Sci Food Agr, 87(8): 1603-1612.
  • Rocha, M.V.P., Rodrigues, T.H.S., Albuquerque, T.L.d., Gonçalves, L.R.B., Macedo, G.R.d. (2014). Evaluation of dilute acid pretreatment on cashew apple bagasse for ethanol and xylitol production. Chem Eng J, 243: 234-243.
  • Salgado, J.M., Rodríguez, N., Cortés, S., Domínguez, J.M. (2012). Effect of nutrient supplementation of crude or detoxified concentrated distilled grape marc hemicellulosic hydrolysates on the xylitol production by Debaryomyces hansenii. Prep Biochem Biotech, 42(1): 1-14.
  • Silva, D.D.V., Arruda, P.V.d., Vicente, F.M.C.F., Sene, L., Silva, S.S.d., Felipe, M.G.A. (2015). Evaluation of fermentative potential of Kluyveromyces marxianus ATCC 36907 in cellulosic and hemicellulosic sugarcane bagasse hydrolysates on xylitol and ethanol production. Ann Microbiol, 65: 687-694.
  • Su, B., Wu, M., Zhang, Z., Lin, J., Yang, L. (2015). Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metab Eng, 31: 112-122.
  • Ur Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., Murtaza, M.A. (2015). Xylitol; a review on bio-production, application, health benefits and related safety issues. Crit Rev Food Sci, 55(11): 1514-1528.
  • Vallejos, M.E., Chade, M., Mereles, E.B., Bengoechea, D.I., Brizuela, J.G., Felissia, F.E., Area, M.C. (2016). Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Ind Crop Prod, 91: 161-169.
  • Villarreal, M.L.M., Prata, A.M.R., Felipe, M.G.A., Almeida e Silva, J.B. (2006). Detoxification procedures of eucalyptus hemicellulose hyrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Tech, 40(1): 17-24.
  • Wang, L., Fan, X., Tang, P., Yuan, Q. (2013a). Xylitol fermentation using hemicellulose hydrolysate prepared by acid pre-impregnated steam explosion of corncob. J Chem Technol Biot, 88(11): 2067-2074.
  • Wang, L., Wu, D., Tang, P., Yuan, Q. (2013b). Effect of organic acids found in cottonseed hull hydrolysate on the xylitol fermentation by Candida tropicalis. Bioproc Biosyst Eng, 36(8): 1053-1061.
  • Wannawilai, S., Chisti, Y., Sirisansaneeyakul, S. (2017). A model of furfural-inhibited growth and xylitol production by Candida magnoliae TISTR 5663. Food Bioprod Process, 105: 129-140.
  • Winkelhausen, E., Kuzmanova, S. (1998). Microbial conversion of D-xylose to xylitol. J Ferment Bioeng, 86(1): 1-14.
  • Zada, B., Chen, M., Chen, C., Yan, L., Xu, Q., Li, W., Guo, Q., Fu, Y. (2017). Recent advances in catalytic production of sugar alcohols and their applications. Sci China Chem, 60(7): 853-869.
  • Zhang, J., Geng, A., Yao, C., Lu, Y., Li, Q. (2012a). Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18. Bioresource Technol, 121: 369-378.
  • Zhang, J., Geng, A., Yao, C., Lu, Y., Li, Q. (2012b). Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresource Technol, 105: 134-141.

UTILIZATION OF HEMICELLULOSIC HYDROLYSATES FOR MICROBIAL XYLITOL PRODUCTION

Yıl 2018, , 151 - 162, 19.01.2018
https://doi.org/10.15237/gida.342722

Öz

Xylitol is one of the sugar
alcohols used in food and pharmaceuticals industries, with relative sweetness
equivalent to sucrose, less calorie and glycemic index values, and also its
anticariogenic properties. Today, it is industrially produced by chemical
processes demanding considerable high costs. On the other hand, when its
potential for reducing the costs is evaluated, studies in recent years are
focused on microbial xylitol production. Yeasts are widely used in microbial
xylitol production studies. In those studies, hemicellulosic hydrolysates
prepared from various lignocellulosic materials and containing xylose necessary
as substrate for the xylitol production are utilized as fermentation media.
This review was focused on xylitol and its production by fermentation,
preparation of hemicellulosic hyrolysates used as natural fermentation media in
xylitol production and recent developments in this subject.

Kaynakça

  • Albuquerque, T.L.d., Silva, I.J.d., Macedo, G.R.d., Rocha, M.V.P. (2014). Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem, 49(11): 1779-1789.
  • Albuquerque, T.L.d., Gomes, S.D.L., Marques, J.E., Silva, I.J.d., Rocha, M.V.P. (2015). Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catal Today, 255: 33-40.
  • Arrizon, J., Mateos, J.C., Sandoval, G., Aguilar, B., Solis, J., Aguilar, M.G. (2012). Bioethanol and xylitol production from different lignocellulosic hydrolysates by sequential fermentation. J Food Process Eng, 35(3): 437-454.
  • Camargo, D., Sene, L., Variz, D.I.L.S., Felipe, M.G.A. (2015). Xylitol bioproduction in hemicellulosic hydrolysate obtained from sorghum forage biomass. Appl Biochem Biotechnol, 175(8): 3628-3642.
  • Castañón Rodríguez, J.F., Portilla Arias, J.A., Aguilar Uscanga, B.R., Aguilar Uscanga MG (2015). Effects of oxygen and nutrients on xylitol and ethanol production in sugarcane bagasse hydrolyzates. Food Sci Biotechnol, 24(4): 1381-1389.
  • Chandel, A.K., Silva, S.S.d., Singh, O.V. (2013). Detoxification of lignocellulosic hydrolysates: biochemical and metabolic engineering toward white biotechnology. BioEnerg Res, 6(1): 388-401.
  • Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H., Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol, 160: 196-206.
  • Cheng, K.K., Ling, H.Z., Zhang, J.A., Ping, W.X., Huang, W., Ge, J.P., Xu, J.M. (2010). Strain isolation and study on process parameters for xylose-to-xylitol bioconversion. Biotechnol Biotec Eq, 24(1): 1606-1611.
  • Dalli, S.S., Patel, M., Rakshit, S.K. (2017). Development of evaluation of poplar hemicellulosic prehydrolysate upstream processes for the enhanced fermentative production of xylitol. Biomass Bioenerg, 105: 402-410.
  • Dasgupta, D., Bandhu, S., Adhikari, D.K., Ghosh, D. (2017). Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiol Res, 197: 9-21.
  • Deng, L., Wang, Y., Zhang, Y., Ma, R. (2007). The enhancement of ammonia pretreatment on the fermentation of rice straw hydrolysate to xylitol. J Food Biochem, 31(2): 195-205.
  • Eryaşar, K., Karasu Yalçın, S. (2016). Evaluation of some lignocellulosic byproducts of food industry for microbial xylitol production by Candida tropicalis. 3 Biotech, 6: 202.
  • Grembecka, M. (2015). Sugar alcohols-their role in modern world of sweeteners: a review. Eur Food Res Technol, 241(1): 1-14.
  • Guamán Burneo, M.C., Dussán, K.J., Cadete, R.M., Cheab, M.A.M., Portero, P., Carvajal Barriga, E.J., Silva, S.S., Rosa, C.A. (2015). Xylitol production by yeasts isolated from rotting wood in the Gálapagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov. A van Leeuw J Microb, 108(4): 919-931.
  • Guo, X., Zhang, R., Li, Z., Dai, D., Li, C., Zhou, X. (2013). A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresource Technol, 128: 547-552.
  • Gupta, R., Gautam, S., Shukla, R., Kuhad, R.C. (2017). Study of charcoal detoxification of acid hydrolysate from corncob and its fermentation to xylitol. J Environ Chem Eng, 5(5): 4573-4582.
  • Hernández Pérez, A.F., Costa, I.A.L., Silva, D.D.V., Dussán, K.J., Villela, T.R., Canettieri, E.V., Carvalho, J.A., Neto, T.G.S., Felipe, M.G.A. (2016). Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production. Bioresource Technol, 200: 1085-1088.
  • Jain, H., Mulay, S. (2014). A review on different modes and methods for yielding a pentose sugar: xylitol. Int J Food Sci Nutr, 65(2): 135-143.
  • Jeon, Y.J., Shin, H.S., Rogers, P.L. (2011). Xylitol production from a mutant strain of Candida tropicalis. Lett Appl Microbiol, 53(1): 106-113.
  • Jönsson, L.J., Martín, C. (2016). Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technol, 199: 103-112.
  • Kamat, S., Gaikwad, S., Ravi Kumar, A., Gade, W.N. (2013). Xylitol production by Cyberlindnera (Williopsis) saturnus, a tropical mangrove yeast from xylose and corn cob hydrolysate. J Appl Microbiol, 115(6): 1357-1367.
  • Kim, S.H., Yun, J.Y., Kim, S.G., Seo, J.H., Park, J.B. (2010). Production of xylitol from D-xylose and glucose with recombinant Corynebacterium glutamicum. Enzyme Microb Technol, 46(5): 366-371.
  • Li, M., Meng, X., Diao, E., Du, F. (2012). Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biot, 87(3): 387–392.
  • Li, Z., Qu, H., Li, C., Zhou, X. (2013). Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations. Bioresource Technol, 149: 413-419.
  • Lourenço, M.V.M., Dini Andreote, F., Aguilar Vildoso, C.I., Basso, L.C. (2014). Biotechnological potential of Candida spp. for the bioconversion of D-xylose to xylitol. Afr J Microbiol Res, 8(20): 2030-2036.
  • Mateo, S., Roberto, I.C., Sánchez, S., Moya, A.J. (2013). Detoxification of hemicellulosic hydrolyzate from olive tree pruning residue. Ind Crop Prod, 49: 196-203.
  • Mateo, S., Puentes, J.G., Roberto, I.C., Sánchez, S., Moya, A.J. (2014). Optimization of acid hydrolysis of olive tree pruning residue. Fermentation with Candida guilliermondii. Biomass Bioenerg, 69: 39-46.
  • Misra, S., Raghuwanshi, S., Saxena, R.K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohyd Polym, 92(2): 1596-1601.
  • Miura, M., Watanabe, I., Shimotori, Y., Aoyama, M., Kojima, Y., Kato, Y. (2013). Microbial conversion of bamboo hemicellulose hydrolyzate to xylitol. Wood Sci Technol, 47: 515-522.
  • Miura, M., Shimotori, Y., Nakatani, H., Harada, A., Aoyama, M. (2015). Bioconversion of birch wood hemicellulose hydrolyzate to xylitol. Appl Biochem Biotech, 176: 947-955.
  • Mohamad, N.L., Mustapa Kamal, S.M., Mokhtar, M.N. (2015). Xylitol biological production: a review of recent studies. Food Rev Int, 31(1): 74-89.
  • Mohamad, N.L., Mustapa Kamal, S.M., Mokhtar, M.N., Husain S.A., Abdullah, N. (2016). Dynamic mathematical modelling of reaction kinetics for xylitol fermentation using Candida tropicalis. Biochem Eng J, 111: 10-17.
  • Mussatto, S.I., Roberto, I.C. (2008). Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem, 43(5): 540-546.
  • Pal, S., Choudhary, V., Kumar, A., Biswas, D., Mondal, A.K., Sahoo, D.K. (2013). Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresource Technol, 147: 449-455.
  • Pérez Bibbins, B., Torrado Agrasar, A., Pérez Rodríguez, N., Aguilar Uscanga, M.G., Domínguez, J.M. (2015). Evaluation of the liquid, solid and total fractions of beer, cider and wine lees as economic nutrient for xylitol production. J Chem Technol Biot, 90(6): 1027-1039.
  • Ping, Y., Ling, H.Z., Song, G., Ge, J.P. (2013). Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem Eng J, 75: 86-91.
  • Rafiqul, I.S.M., Mimi Sakinah, A.M. (2013). Processes for the production of xylitol- a review. Food Rev Int, 29(2): 127-156.
  • Rafiqul, I.S.M., Mimi Sakinah, A.M., Zularisam, A.W. (2015). Inhibition by toxic compounds in the hemicellulosic hydrolysates on the activity of xylose reductase from Candida tropicalis. Biotechnol Lett, 37: 191-196.
  • Rao, L.V., Goli, J.K., Gentela, J., Koti, S. (2016). Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresource Technol, 213:299-310.
  • Rambo, M.K.D., Bevilaqua, D.B., Brenner, C.G.B., Martins, A.F., Mario, D.N., Alves, S.H., Mallmann, C.A. (2013). Xylitol from rice husks by acid hydrolysis and Candida yeast fermentation. Quim Nova, 36(5): 634-639.
  • Rivas, B., Torrado, A., Rivas, S., Moldes, A.B., Domínguez, J.M. (2007). Simultaneous lactic acid and xylitol production from vine trimming wastes. J Sci Food Agr, 87(8): 1603-1612.
  • Rocha, M.V.P., Rodrigues, T.H.S., Albuquerque, T.L.d., Gonçalves, L.R.B., Macedo, G.R.d. (2014). Evaluation of dilute acid pretreatment on cashew apple bagasse for ethanol and xylitol production. Chem Eng J, 243: 234-243.
  • Salgado, J.M., Rodríguez, N., Cortés, S., Domínguez, J.M. (2012). Effect of nutrient supplementation of crude or detoxified concentrated distilled grape marc hemicellulosic hydrolysates on the xylitol production by Debaryomyces hansenii. Prep Biochem Biotech, 42(1): 1-14.
  • Silva, D.D.V., Arruda, P.V.d., Vicente, F.M.C.F., Sene, L., Silva, S.S.d., Felipe, M.G.A. (2015). Evaluation of fermentative potential of Kluyveromyces marxianus ATCC 36907 in cellulosic and hemicellulosic sugarcane bagasse hydrolysates on xylitol and ethanol production. Ann Microbiol, 65: 687-694.
  • Su, B., Wu, M., Zhang, Z., Lin, J., Yang, L. (2015). Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metab Eng, 31: 112-122.
  • Ur Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., Murtaza, M.A. (2015). Xylitol; a review on bio-production, application, health benefits and related safety issues. Crit Rev Food Sci, 55(11): 1514-1528.
  • Vallejos, M.E., Chade, M., Mereles, E.B., Bengoechea, D.I., Brizuela, J.G., Felissia, F.E., Area, M.C. (2016). Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Ind Crop Prod, 91: 161-169.
  • Villarreal, M.L.M., Prata, A.M.R., Felipe, M.G.A., Almeida e Silva, J.B. (2006). Detoxification procedures of eucalyptus hemicellulose hyrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Tech, 40(1): 17-24.
  • Wang, L., Fan, X., Tang, P., Yuan, Q. (2013a). Xylitol fermentation using hemicellulose hydrolysate prepared by acid pre-impregnated steam explosion of corncob. J Chem Technol Biot, 88(11): 2067-2074.
  • Wang, L., Wu, D., Tang, P., Yuan, Q. (2013b). Effect of organic acids found in cottonseed hull hydrolysate on the xylitol fermentation by Candida tropicalis. Bioproc Biosyst Eng, 36(8): 1053-1061.
  • Wannawilai, S., Chisti, Y., Sirisansaneeyakul, S. (2017). A model of furfural-inhibited growth and xylitol production by Candida magnoliae TISTR 5663. Food Bioprod Process, 105: 129-140.
  • Winkelhausen, E., Kuzmanova, S. (1998). Microbial conversion of D-xylose to xylitol. J Ferment Bioeng, 86(1): 1-14.
  • Zada, B., Chen, M., Chen, C., Yan, L., Xu, Q., Li, W., Guo, Q., Fu, Y. (2017). Recent advances in catalytic production of sugar alcohols and their applications. Sci China Chem, 60(7): 853-869.
  • Zhang, J., Geng, A., Yao, C., Lu, Y., Li, Q. (2012a). Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18. Bioresource Technol, 121: 369-378.
  • Zhang, J., Geng, A., Yao, C., Lu, Y., Li, Q. (2012b). Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresource Technol, 105: 134-141.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Diğer ID GD17094
Bölüm Makaleler
Yazarlar

Kübra Eryaşar Örer

Seda Karasu Yalçın

Yayımlanma Tarihi 19 Ocak 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Eryaşar Örer, K., & Karasu Yalçın, S. (2018). MİKROBİYEL KSİLİTOL ÜRETİMİNDE HEMİSELÜLOZİK HİDROLİZATLARIN KULLANIMI. Gıda, 43(1), 151-162. https://doi.org/10.15237/gida.342722
AMA Eryaşar Örer K, Karasu Yalçın S. MİKROBİYEL KSİLİTOL ÜRETİMİNDE HEMİSELÜLOZİK HİDROLİZATLARIN KULLANIMI. GIDA. Ocak 2018;43(1):151-162. doi:10.15237/gida.342722
Chicago Eryaşar Örer, Kübra, ve Seda Karasu Yalçın. “MİKROBİYEL KSİLİTOL ÜRETİMİNDE HEMİSELÜLOZİK HİDROLİZATLARIN KULLANIMI”. Gıda 43, sy. 1 (Ocak 2018): 151-62. https://doi.org/10.15237/gida.342722.
EndNote Eryaşar Örer K, Karasu Yalçın S (01 Ocak 2018) MİKROBİYEL KSİLİTOL ÜRETİMİNDE HEMİSELÜLOZİK HİDROLİZATLARIN KULLANIMI. Gıda 43 1 151–162.
IEEE K. Eryaşar Örer ve S. Karasu Yalçın, “MİKROBİYEL KSİLİTOL ÜRETİMİNDE HEMİSELÜLOZİK HİDROLİZATLARIN KULLANIMI”, GIDA, c. 43, sy. 1, ss. 151–162, 2018, doi: 10.15237/gida.342722.
ISNAD Eryaşar Örer, Kübra - Karasu Yalçın, Seda. “MİKROBİYEL KSİLİTOL ÜRETİMİNDE HEMİSELÜLOZİK HİDROLİZATLARIN KULLANIMI”. Gıda 43/1 (Ocak 2018), 151-162. https://doi.org/10.15237/gida.342722.
JAMA Eryaşar Örer K, Karasu Yalçın S. MİKROBİYEL KSİLİTOL ÜRETİMİNDE HEMİSELÜLOZİK HİDROLİZATLARIN KULLANIMI. GIDA. 2018;43:151–162.
MLA Eryaşar Örer, Kübra ve Seda Karasu Yalçın. “MİKROBİYEL KSİLİTOL ÜRETİMİNDE HEMİSELÜLOZİK HİDROLİZATLARIN KULLANIMI”. Gıda, c. 43, sy. 1, 2018, ss. 151-62, doi:10.15237/gida.342722.
Vancouver Eryaşar Örer K, Karasu Yalçın S. MİKROBİYEL KSİLİTOL ÜRETİMİNDE HEMİSELÜLOZİK HİDROLİZATLARIN KULLANIMI. GIDA. 2018;43(1):151-62.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/