Araştırma Makalesi
BibTex RIS Kaynak Göster

Pseudomonas putida İLE İZOÖJENOLDEN DOĞAL VANİLİN ÜRETİMİNDE BAZI ORTAM KOŞULLARININ MOLAR VERİM ÜZERİNE ETKİSİ

Yıl 2020, , 9 - 19, 01.12.2019
https://doi.org/10.15237/gida.GD19112

Öz

Vanilin, dünyada en çok kullanılan aroma maddelerinden
biridir. Son yıllarda, doğal vanilin üretimindeki yetersiz arz ve yüksek
maliyet nedeniyle araştırmalar biyodönüşüm yolları üzerine yoğunlaşmıştır. Bu
çalışmada,
Pseudomonas putida (HUT 8100) kültürü kullanılarak
izoöjenolden doğal vanilin üretim imkânı araştırılmış; sıcaklık, pH ve
havalandırma koşullarının vanilin üretimi üzerine etkileri incelenmiştir. Elde
edilen sonuçlar, kullanılan
P. putida kültürünün tek karbon kaynağı
olarak izoöjenolü kullanabildiği ve bunu vaniline dönüştürme yeteneğine sahip
olduğunu göstermiştir. En yüksek vanilin üretim kapasitesine 28°C’de,
biyodönüşüm ortamının başlangıç pH’sı 6.3 olarak ayarlandığında ulaşılmıştır.
Havalandırmanın kesilmesiyle biyokatalistin üretkenliğinde belirgin bir düşüş
gözlenmiştir. Üretim için en uygun şartların seçilmesiyle 120 saat sonunda
%25.1 molar verimle 877.9 mg/L düzeyinde bir üretim gerçekleştirilmiştir.
Yapılacak daha ileri optimizasyon çalışmaları ile birlikte üretilen vanilin
miktarının arttırılabileceği ve yöntemin endüstriyel proseslere uygun hale
getirilebileceği düşünülmektedir. 

Destekleyen Kurum

İnönü Üniversitesi

Proje Numarası

2015-17

Teşekkür

Bu çalışma İnönü Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından 2015-17 proje numarasıyla desteklenmiştir. Yazarlar, mikroorganizma kültürünün temininde verdikleri destekten ötürü HUT Culture Collection’a teşekkür etmektedir.

Kaynakça

  • Al-Bayati, F.A. (2008). Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J Ethnopharmacol, 116: 403-406, doi: 10.1016/j.jep.2007.12.003.
  • Ashengroph, M., Nahvi, I., Amini, J. (2013). Application of Taguchi design and response surface methodology for improving conversion of isoeugenol into vanillin by resting cells of Psychrobacter sp. CSW4. Iran J Pharm Res, 12(3): 411-421. Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., Momenbeik, F. (2010). Optimization of media composition for improving conversion of isoeugenol into vanillin with Pseudomonas sp. strain KOB10 using the Taguchi method. Biocatal Biotransformation, 28(5-6): 339-347, doi: 10.3109/10242422.2010.530660.
  • Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., Momenbeik, F. (2011). Use of growing cells of Pseudomonas aeruginosa for synthesis of the natural vanillin via conversion of isoeugenol. Iran J Pharm Res, 10(4): 749-757.
  • Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., Momenbeik, F. (2012). Conversion of isoeugenol to vanillin by Psychrobacter sp. strain CSW4. Appl Biochem Biotechnol, 166: 1-12, doi: 10.1007/s12010-011-9397-6.
  • Banerjee, G., Chattopadhyay, P. (2019). Vanillin biotechnology: the perspectives and future. J Sci Food Agric, 99: 499-506, doi: 10.1002/jsfa.9303.
  • Bicas, J.L., Fontanille, P., Pastore, G.M., Larroche, C. (2010). A bioprocess for the production of high concentrations of R-(+)-a-terpineol from R-(+)-limonene. Process Biochem, 45: 481-486, doi: 10.1016/j.procbio.2009.11.007. Fache, M., Boutevin, B., Caillol, S. (2016). Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng, 4: 35-46, doi: 10.1021/acssuschemeng.5b01344.
  • Funk, C., Rainie, L., Page, D. (2015). Public and scientists’ views on science and society. www.pewinternet.org/wp-content/uploads/sites/9/2015/01/PI_ScienceandSociety_Report_ 012915.pdf (Accessed 24 June 2019).
  • Furukawa, H., Morita, H., Yoshida, T., Nagasawa, T. (2003). Conversion of isoeugenol into vanillic acid by Pseudomonas putida 158 cells exhibiting high isoeugenol-degrading activity. J Biosci Bioeng, 96(4): 401-403, doi: 10.1016/S1389-1723(03)90145-9.
  • Gallage, N.J., Moller, B.L. (2018). Vanilla: the most popular flavor. In: Biotechnology of Natural Products, Schwab, W., Lange, B.M., Wüst, M. (editors). Springer International Publishing, Switzerland, pp. 3-24, doi: 10.1007/978-3-319-67903-7.
  • Gonzalez, C.G., Mustafa, N.R., Wilson, E.G., Verpoorte, R., Choi, Y.H. (2018). Application of natural deep eutectic solvents for the ‘green’ extraction of vanillin from vanilla pods. Flavour Fragr J, 33: 91-96, doi: 10.1002/ffj.3425.
  • Hua, D., Ma, C., Lin, S., Song, L., Deng, Z., Maomy, Z., Zhang, Z., Yu, B., Xu, P. (2007). Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: identification of major metabolites. J Biotechnol, 130: 463-470, doi: 10.1016/j.jbiotec.2007.05.003.
  • Julsing, M.K., Kuhn, D., Schmid, A., Bühler, B. (2012). Resting cells of recombinant E. coli show high epoxidation yields on energy source and high sensitivity to product inhibition. Biotechnol Bioeng, 109(5): 1109-1119, doi: 10.1002/bit.24404.
  • Kasana, R.C., Sharma, U.K., Sharma, N., Sinha, A.K. (2007). Isolation and identification of a novel strain of Pseudomonas chlororaphis capable of transforming isoeugenol to vanillin. Curr Microbiol, 54: 457-461, doi: 10.1007/s00284-006-0627-z.
  • Li, Y.H., Sun, Z.H., Zheng, P. (2004). Determination of vanillin, eugenol and isoeugenol by RP-HPLC. Chromatographia, 60: 709-713,doi: 10.1365/s10337-004-0440-4.Magan, N., Aldred, D. (2007). Why do fungi produce mycotoxins? In: Food Mycology: a multifaceted approach to fungi and food, Dijksterhuis, J., Samson, R.A. (editors), Volume 25, CRC Press, the USA, pp. 121-133.
  • Marquez-Medina, M.D., Prinsen, P., Li, H., Shih, K., Romero., A.A., Luque, R. (2018). Continuous-flow synthesis of supported magnetic iron oxide nanoparticles for efficient isoeugenol conversion into vanillin. ChemSusChem, 11: 389-396, doi: 10.1002/cssc.201701884.
  • Molina, G., Pimentel, M.R., Pastore, G.M. (2013). Pseudomonas: a promising biocatalyst for the bioconversion of terpenes. Appl Microbiol Biotechnol, 97: 1851-1864, doi: 10.1007/s00253-013-4701-8.
  • Ostovar, S., Franco, A., Puente-Santiago, A.R., Pinilla-de Dios, M., Rodriguez-Padron, D., Shaterian, H.R., Luque, R. (2018). Efficient mechanochemical bifunctional nanocatalysts for the conversion of isoeugenol to vanillin. Front Chem, 6:77, doi: 10.3389/fchem.2018.00077.
  • Perkins, C., Siddiqui, S., Puri, M., Demain, A.L. (2015). Biotechnological applications of microbial conversions. Crit Rev Biotechnol, 36(6): 1050-1065, doi: 10.3109/07388551.2015.1083943.
  • Şeker, Ş., Beyenal, H., Salih, B., Tanyolaç, A. (1997). Multi-substrate growth kinetics of Pseudomonas putida for phenol removal. Appl Microbiol Biotechnol, 47: 610-614, doi: 10.1007/s002530050982.
  • Taira, J., Toyoshima, R., Ameku, N., Iguchi, A., Tamaki, Y. (2018). Vanillin production by biotransformation of phenolic compounds in fungus, Aspergillus luchuensis. AMB Express, 8: 40, doi: 10.1186/s13568-018-0569-4.
  • Vasudevan, S., Bhat, S.V. (2011). Biotransformation of isoeugenol catalyzed by growing cells of Pseudomonas putida. Biocatal Biotransformation, 29(4): 147-150, doi: 10.3109/10242422.2011.589898.
  • Wang, Y., Sun, S., Li, F., Cao, X., Sun, R. (2018). Production of vanillin from lignin: the relationship between β-O-4 linkages and vanillin yield. Ind Crops Prod, 116: 116-121, doi: 10.1016/j.indcrop.2018.02.043.
  • Wangrangsimagul, N., Klinsakul, K., Vangnai, A.S., Wongkongkatep, J., Inprakhon, P., Honda, K., Ohtake, H., Kato, J., Pongtharangkul, T. (2012). Bioproduction of vanillin using an organic solvent-tolerant Brevibacillus agri 13. Appl Microbiol Biotechnol, 93: 555-563, doi: 10.1007/s00253-011-3510-1.
  • Wilde, A.S., Frandsen, H.L., Fromberg, A., Smedsgaard, J., Greule, M. (2019). Isotopic characterization of vanillin ex glucose by GC-IRMS - new challenge for natural vanilla flavour authentication? Food Control, 106: 106735, doi: 10.1016/j.foodcont.2019.106735.
  • Wongtanyawat, N., Lusanandana, P., Khwanjaisakun, N., Kongpanna, P., Phromprasit, J., Simasatitkul, L., Amornraksa, S., Assabumrungrat, S. (2018). Comparison of different kraft lignin-based vanillin production processes. Comput Chem Eng, 117: 159-170, doi: 10.1016/j.compchemeng.2018.05.020.
  • Yamada, M., Okada, Y., Yoshida, T., Nagasawa, T. (2007). Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl Microbiol Biotechnol, 73: 1025-1030, doi: 10.1007/s00253-006-0569-1.
  • Yamada, M., Okada, Y., Yoshida, T., Nagasawa, T. (2008). Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida. Biotechnol Lett, 30: 665-670, doi: 10.1007/s10529-007-9602-4.
  • Yan, L., Chen, P., Zhang, S., Li, S., Yan, X., Wang, N., Liang, N., Li, H. (2016). Biotransformation of ferulic acid to vanillin in packed bed-stirred fermentors. Sci Rep, 6: 1-12, doi: 10.1038/srep34644.
  • Zhang, Y., Xu, P., Han, S., Yan, H., Ma, C. (2006). Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8. Appl Microbiol Biotechnol, 73: 771-779, doi: 10.1007/s00253-006-0544-x.
  • Zhao, L., Xie, Y., Chen, L., Xuefeng, X., Zhao, C.X., Cheng, F. (2018). Efficient biotransformation of isoeugenol to vanillin in recombinant strains of Escherichia coli by using engineered isoeugenol monooxygenase and sol-gel chitosan membrane. Process Biochem, 71: 76-81, doi: 10.1016/j.procbio.2018.05.013.
  • Zhao, L.Q., Sun, Z.H., Zheng, P., He, J.Y. (2006). Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8. Process Biochem, 41: 1673-1676, doi: 10.1016/j.procbio.2006.02.007.
  • Zhao, L.Q., Sun, Z.H., Zheng, P., Zhu, L.L. (2005). Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis. Biotechnol Lett, 27: 1505-1509, doi: 10.1007/s10529-005-1466-x.

EFFECT OF CULTURE CONDITIONS ON MOLAR YIELD OF NATURAL VANILLIN PRODUCTION FROM ISOEUGENOL BY Pseudomonas putida

Yıl 2020, , 9 - 19, 01.12.2019
https://doi.org/10.15237/gida.GD19112

Öz

Vanillin is one of the most widely used aroma compounds
in the world. In recent years, studies are focused on bioconversion routes due
to insufficient supply and high cost of natural vanillin production. In this
study, possibility of natural vanillin production by using
Pseudomonas
putida
and effects of temperature, pH and aeration conditions on the
production yield were investigated. Results showed that
P. putida
culture had ability to use isoeugenol as sole carbon source and convert it into
vanillin. The highest production yield was reached at 28°C when setting the
initial pH of bioconversion medium at 6.3. A distinct fall was observed in
productivity of biocatalyst by interruption of aeration. Using optimal
conditions, 877.9 mg/L vanillin production was achieved with 25.1% molar yield
in 120 h. It is thought that produced vanillin may be enhanced with further
optimization studies and the method can be made suitable for industrial
processes.

Proje Numarası

2015-17

Kaynakça

  • Al-Bayati, F.A. (2008). Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J Ethnopharmacol, 116: 403-406, doi: 10.1016/j.jep.2007.12.003.
  • Ashengroph, M., Nahvi, I., Amini, J. (2013). Application of Taguchi design and response surface methodology for improving conversion of isoeugenol into vanillin by resting cells of Psychrobacter sp. CSW4. Iran J Pharm Res, 12(3): 411-421. Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., Momenbeik, F. (2010). Optimization of media composition for improving conversion of isoeugenol into vanillin with Pseudomonas sp. strain KOB10 using the Taguchi method. Biocatal Biotransformation, 28(5-6): 339-347, doi: 10.3109/10242422.2010.530660.
  • Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., Momenbeik, F. (2011). Use of growing cells of Pseudomonas aeruginosa for synthesis of the natural vanillin via conversion of isoeugenol. Iran J Pharm Res, 10(4): 749-757.
  • Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., Momenbeik, F. (2012). Conversion of isoeugenol to vanillin by Psychrobacter sp. strain CSW4. Appl Biochem Biotechnol, 166: 1-12, doi: 10.1007/s12010-011-9397-6.
  • Banerjee, G., Chattopadhyay, P. (2019). Vanillin biotechnology: the perspectives and future. J Sci Food Agric, 99: 499-506, doi: 10.1002/jsfa.9303.
  • Bicas, J.L., Fontanille, P., Pastore, G.M., Larroche, C. (2010). A bioprocess for the production of high concentrations of R-(+)-a-terpineol from R-(+)-limonene. Process Biochem, 45: 481-486, doi: 10.1016/j.procbio.2009.11.007. Fache, M., Boutevin, B., Caillol, S. (2016). Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng, 4: 35-46, doi: 10.1021/acssuschemeng.5b01344.
  • Funk, C., Rainie, L., Page, D. (2015). Public and scientists’ views on science and society. www.pewinternet.org/wp-content/uploads/sites/9/2015/01/PI_ScienceandSociety_Report_ 012915.pdf (Accessed 24 June 2019).
  • Furukawa, H., Morita, H., Yoshida, T., Nagasawa, T. (2003). Conversion of isoeugenol into vanillic acid by Pseudomonas putida 158 cells exhibiting high isoeugenol-degrading activity. J Biosci Bioeng, 96(4): 401-403, doi: 10.1016/S1389-1723(03)90145-9.
  • Gallage, N.J., Moller, B.L. (2018). Vanilla: the most popular flavor. In: Biotechnology of Natural Products, Schwab, W., Lange, B.M., Wüst, M. (editors). Springer International Publishing, Switzerland, pp. 3-24, doi: 10.1007/978-3-319-67903-7.
  • Gonzalez, C.G., Mustafa, N.R., Wilson, E.G., Verpoorte, R., Choi, Y.H. (2018). Application of natural deep eutectic solvents for the ‘green’ extraction of vanillin from vanilla pods. Flavour Fragr J, 33: 91-96, doi: 10.1002/ffj.3425.
  • Hua, D., Ma, C., Lin, S., Song, L., Deng, Z., Maomy, Z., Zhang, Z., Yu, B., Xu, P. (2007). Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: identification of major metabolites. J Biotechnol, 130: 463-470, doi: 10.1016/j.jbiotec.2007.05.003.
  • Julsing, M.K., Kuhn, D., Schmid, A., Bühler, B. (2012). Resting cells of recombinant E. coli show high epoxidation yields on energy source and high sensitivity to product inhibition. Biotechnol Bioeng, 109(5): 1109-1119, doi: 10.1002/bit.24404.
  • Kasana, R.C., Sharma, U.K., Sharma, N., Sinha, A.K. (2007). Isolation and identification of a novel strain of Pseudomonas chlororaphis capable of transforming isoeugenol to vanillin. Curr Microbiol, 54: 457-461, doi: 10.1007/s00284-006-0627-z.
  • Li, Y.H., Sun, Z.H., Zheng, P. (2004). Determination of vanillin, eugenol and isoeugenol by RP-HPLC. Chromatographia, 60: 709-713,doi: 10.1365/s10337-004-0440-4.Magan, N., Aldred, D. (2007). Why do fungi produce mycotoxins? In: Food Mycology: a multifaceted approach to fungi and food, Dijksterhuis, J., Samson, R.A. (editors), Volume 25, CRC Press, the USA, pp. 121-133.
  • Marquez-Medina, M.D., Prinsen, P., Li, H., Shih, K., Romero., A.A., Luque, R. (2018). Continuous-flow synthesis of supported magnetic iron oxide nanoparticles for efficient isoeugenol conversion into vanillin. ChemSusChem, 11: 389-396, doi: 10.1002/cssc.201701884.
  • Molina, G., Pimentel, M.R., Pastore, G.M. (2013). Pseudomonas: a promising biocatalyst for the bioconversion of terpenes. Appl Microbiol Biotechnol, 97: 1851-1864, doi: 10.1007/s00253-013-4701-8.
  • Ostovar, S., Franco, A., Puente-Santiago, A.R., Pinilla-de Dios, M., Rodriguez-Padron, D., Shaterian, H.R., Luque, R. (2018). Efficient mechanochemical bifunctional nanocatalysts for the conversion of isoeugenol to vanillin. Front Chem, 6:77, doi: 10.3389/fchem.2018.00077.
  • Perkins, C., Siddiqui, S., Puri, M., Demain, A.L. (2015). Biotechnological applications of microbial conversions. Crit Rev Biotechnol, 36(6): 1050-1065, doi: 10.3109/07388551.2015.1083943.
  • Şeker, Ş., Beyenal, H., Salih, B., Tanyolaç, A. (1997). Multi-substrate growth kinetics of Pseudomonas putida for phenol removal. Appl Microbiol Biotechnol, 47: 610-614, doi: 10.1007/s002530050982.
  • Taira, J., Toyoshima, R., Ameku, N., Iguchi, A., Tamaki, Y. (2018). Vanillin production by biotransformation of phenolic compounds in fungus, Aspergillus luchuensis. AMB Express, 8: 40, doi: 10.1186/s13568-018-0569-4.
  • Vasudevan, S., Bhat, S.V. (2011). Biotransformation of isoeugenol catalyzed by growing cells of Pseudomonas putida. Biocatal Biotransformation, 29(4): 147-150, doi: 10.3109/10242422.2011.589898.
  • Wang, Y., Sun, S., Li, F., Cao, X., Sun, R. (2018). Production of vanillin from lignin: the relationship between β-O-4 linkages and vanillin yield. Ind Crops Prod, 116: 116-121, doi: 10.1016/j.indcrop.2018.02.043.
  • Wangrangsimagul, N., Klinsakul, K., Vangnai, A.S., Wongkongkatep, J., Inprakhon, P., Honda, K., Ohtake, H., Kato, J., Pongtharangkul, T. (2012). Bioproduction of vanillin using an organic solvent-tolerant Brevibacillus agri 13. Appl Microbiol Biotechnol, 93: 555-563, doi: 10.1007/s00253-011-3510-1.
  • Wilde, A.S., Frandsen, H.L., Fromberg, A., Smedsgaard, J., Greule, M. (2019). Isotopic characterization of vanillin ex glucose by GC-IRMS - new challenge for natural vanilla flavour authentication? Food Control, 106: 106735, doi: 10.1016/j.foodcont.2019.106735.
  • Wongtanyawat, N., Lusanandana, P., Khwanjaisakun, N., Kongpanna, P., Phromprasit, J., Simasatitkul, L., Amornraksa, S., Assabumrungrat, S. (2018). Comparison of different kraft lignin-based vanillin production processes. Comput Chem Eng, 117: 159-170, doi: 10.1016/j.compchemeng.2018.05.020.
  • Yamada, M., Okada, Y., Yoshida, T., Nagasawa, T. (2007). Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl Microbiol Biotechnol, 73: 1025-1030, doi: 10.1007/s00253-006-0569-1.
  • Yamada, M., Okada, Y., Yoshida, T., Nagasawa, T. (2008). Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida. Biotechnol Lett, 30: 665-670, doi: 10.1007/s10529-007-9602-4.
  • Yan, L., Chen, P., Zhang, S., Li, S., Yan, X., Wang, N., Liang, N., Li, H. (2016). Biotransformation of ferulic acid to vanillin in packed bed-stirred fermentors. Sci Rep, 6: 1-12, doi: 10.1038/srep34644.
  • Zhang, Y., Xu, P., Han, S., Yan, H., Ma, C. (2006). Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8. Appl Microbiol Biotechnol, 73: 771-779, doi: 10.1007/s00253-006-0544-x.
  • Zhao, L., Xie, Y., Chen, L., Xuefeng, X., Zhao, C.X., Cheng, F. (2018). Efficient biotransformation of isoeugenol to vanillin in recombinant strains of Escherichia coli by using engineered isoeugenol monooxygenase and sol-gel chitosan membrane. Process Biochem, 71: 76-81, doi: 10.1016/j.procbio.2018.05.013.
  • Zhao, L.Q., Sun, Z.H., Zheng, P., He, J.Y. (2006). Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8. Process Biochem, 41: 1673-1676, doi: 10.1016/j.procbio.2006.02.007.
  • Zhao, L.Q., Sun, Z.H., Zheng, P., Zhu, L.L. (2005). Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis. Biotechnol Lett, 27: 1505-1509, doi: 10.1007/s10529-005-1466-x.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Murat Yılmaztekin 0000-0002-5667-9169

Hüseyin Karakaya 0000-0002-6311-473X

Proje Numarası 2015-17
Yayımlanma Tarihi 1 Aralık 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Yılmaztekin, M., & Karakaya, H. (2019). Pseudomonas putida İLE İZOÖJENOLDEN DOĞAL VANİLİN ÜRETİMİNDE BAZI ORTAM KOŞULLARININ MOLAR VERİM ÜZERİNE ETKİSİ. Gıda, 45(1), 9-19. https://doi.org/10.15237/gida.GD19112
AMA Yılmaztekin M, Karakaya H. Pseudomonas putida İLE İZOÖJENOLDEN DOĞAL VANİLİN ÜRETİMİNDE BAZI ORTAM KOŞULLARININ MOLAR VERİM ÜZERİNE ETKİSİ. GIDA. Aralık 2019;45(1):9-19. doi:10.15237/gida.GD19112
Chicago Yılmaztekin, Murat, ve Hüseyin Karakaya. “Pseudomonas Putida İLE İZOÖJENOLDEN DOĞAL VANİLİN ÜRETİMİNDE BAZI ORTAM KOŞULLARININ MOLAR VERİM ÜZERİNE ETKİSİ”. Gıda 45, sy. 1 (Aralık 2019): 9-19. https://doi.org/10.15237/gida.GD19112.
EndNote Yılmaztekin M, Karakaya H (01 Aralık 2019) Pseudomonas putida İLE İZOÖJENOLDEN DOĞAL VANİLİN ÜRETİMİNDE BAZI ORTAM KOŞULLARININ MOLAR VERİM ÜZERİNE ETKİSİ. Gıda 45 1 9–19.
IEEE M. Yılmaztekin ve H. Karakaya, “Pseudomonas putida İLE İZOÖJENOLDEN DOĞAL VANİLİN ÜRETİMİNDE BAZI ORTAM KOŞULLARININ MOLAR VERİM ÜZERİNE ETKİSİ”, GIDA, c. 45, sy. 1, ss. 9–19, 2019, doi: 10.15237/gida.GD19112.
ISNAD Yılmaztekin, Murat - Karakaya, Hüseyin. “Pseudomonas Putida İLE İZOÖJENOLDEN DOĞAL VANİLİN ÜRETİMİNDE BAZI ORTAM KOŞULLARININ MOLAR VERİM ÜZERİNE ETKİSİ”. Gıda 45/1 (Aralık 2019), 9-19. https://doi.org/10.15237/gida.GD19112.
JAMA Yılmaztekin M, Karakaya H. Pseudomonas putida İLE İZOÖJENOLDEN DOĞAL VANİLİN ÜRETİMİNDE BAZI ORTAM KOŞULLARININ MOLAR VERİM ÜZERİNE ETKİSİ. GIDA. 2019;45:9–19.
MLA Yılmaztekin, Murat ve Hüseyin Karakaya. “Pseudomonas Putida İLE İZOÖJENOLDEN DOĞAL VANİLİN ÜRETİMİNDE BAZI ORTAM KOŞULLARININ MOLAR VERİM ÜZERİNE ETKİSİ”. Gıda, c. 45, sy. 1, 2019, ss. 9-19, doi:10.15237/gida.GD19112.
Vancouver Yılmaztekin M, Karakaya H. Pseudomonas putida İLE İZOÖJENOLDEN DOĞAL VANİLİN ÜRETİMİNDE BAZI ORTAM KOŞULLARININ MOLAR VERİM ÜZERİNE ETKİSİ. GIDA. 2019;45(1):9-19.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/