Derleme
BibTex RIS Kaynak Göster

BIOCONTROL OF POSTHARVEST FUNGAL DISEASES IN FRUITS AND VEGETABLES BY ANTAGONISTIC YEASTS

Yıl 2019, Cilt: 44 Sayı: 1, 31 - 49, 15.02.2019
https://doi.org/10.15237/gida.GD18082

Öz

Postharvest diseases account for significant amount of
postharvest losses of fruit and vegetables worldwide. Today, use of synthetic
chemical fungicides is principal method of controlling postharvest pathogens.
However, increasing concerns regarding residues of fungicides in food supply
and development of fungicide resistant pathogens have prompted the search for
safer alternative disease management strategies. Usage of biocontrol agents
(BCAs) has emerged as one of the most promising methods to decrease postharvest
losses. Among various microbial agents, use of antagonistic yeasts has been
especially emphasized due to production of antibiotics is not involved in their
inhibitory activities and they are effective against a wide range of pathogens.
Current review provides a brief overview on postharvest diseases of fruit and
vegetables, biocontrol, antagonist and fungal pathogens. 
Additionally, mode of action of yeasts,
enhancing the bioefficacy of antagonists and commercial applications of BCAs
have been discussed and recent studies in literature have been summarized.

Kaynakça

  • Aloui, H., Licciardello, F., Khwaldia, K., Hamdi, M., Restuccia, C. (2015). Physical properties and antifungal activity of bioactive films containing Wickerhamomyces anamolus killer yeast and their application for preservation of oranges and control of postharvest green mold caused by Penicillium digitatum. Int J Food Microbiol, 200: 22-30. doi: 10.1016/j.ijfoodmicro.2015.01.015.
  • Anonim, (2017). Türkiye Cumhuriyeti Ekonomi Bakanlığı. Yaş Meyve ve Sebze Sektörü: Sektör Raporları. İhracat Genel Müdürlüğü Tarım Ürünleri Daire Başkanlığı.
  • Arras, G., de-Cicco, V., Arru, S., Lima, G., (1998). Biocontrol by yeasts of blue mold of citrus fruits and the mode of action of an isolate of Pichia guilliermondii. J Hortic Sci, 73(3): 413–418. doi: 10.1080/14620316.1998.11510993.
  • Bautista-Rosales, P. U., Calderon-Santoyo, M., Servín-Villegas, R., Ochoa-Álvarez, N. A., Ragazzo-Sánchez, J. A. (2013). Action mechanisms of the yeast Candida fermentati for the control of thephytopathogen Colletotrichum gloeosporioides in mangoes. Biol Control, 65(3): 293-301. doi: 10.1016/j.biocontrol.2013.03.010.
  • Calvo, H., Marco, P., Blanco, D., Oria, R., Venturini, M.E. (2017). Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiol, 63: 101–110. doi: 10.1016/j.fm.2016.11.004.
  • Campos-Martínez, A., Velázquez-del Valle, M.G., Flores-Moctezuma, H.E., Suárez-Rodríguez, R., Ramírez-Trujillo, J.A., Hernández-Lauzardo, A.N. (2016). Antagonistic yeasts with potential to control Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. and Colletotrichum acutatum J.H. Simmonds on avocado fruits. Crop Prot, 89: 101–104. doi: 10.1094/PDIS-10-14-1019-PDN.
  • Cao, J., Zhang, H., Yang, Q., Ren, R. (2013). Efficacy of Pichia caribbica in controlling blue mold rot and patulin degradation in apples. Int J Food Microbiol, 162(2): 167 173. doi: 10.1016/j.ijfoodmicro.2013.01.007.
  • Castoria, R., Caputo, L., De Curtis, F., De Cicco, V. (2003). Resistance of postharvest biocontrol yeasts to oxidative stress: a possible new mechanism of action. Phytopathology, 93(5): 564–572. doi: 10.1094/PHYTO.2003.93.5.564.
  • de Paiva, E., Serradilla, M. J., Ruiz-Moyano, S., Cordoba, M. G., Villalobos, M. C., Casquete, R., Hernandez, A. (2017). Combined effect of antagonistic yeast and modified atmosphere to control Penicillium expansum infection in sweet cherries cv. Ambrunes. Int J Food Microbiol, 241: 276-282. doi: 10.1016/j.ijfoodmicro.2016.10.033.
  • Di Francesco, A., Ugolini, L., Lazzeri, L., Mari, M. (2015). Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol Conrol, 81: 8-14. doi: 10.1016/j.biocontrol.2014.10.004.
  • Droby, S., Wisniewski, M., Macarisin, D., Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol Technol, 52(2): 137-145. doi: 10.1016/j.postharvbio.2008.11.009.
  • Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., Jijakli, M. H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol Technol, 122: 22-29. doi: 10.1016/j.postharvbio.2016.04.006.
  • EFSA, 2014. The 2011 European Union report on pesticide residues in food. EFSA J. 12(5), 3694, Parma, Italy.
  • EFSA (2016). Panel on Biological Hazards (BIOHAZ). Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 4: Suitability of taxonomic units notified to EFSA until March 2016. Efsa J, 14(7): 4522. doi: 10.2903/j.efsa.2016.4522.
  • FAO. (2011). Global food losses and food waste: extent, causes and prevention. http://www.fao.org/docrep/014/mb060e/mb060e.pdf (Erişildi 21 Mayıs 2018).
  • FDA. (2018). Generally Recagnized as Safe (GRAS). https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/ (Erişildi 21 Mayıs 2018).
  • Ferraz, L.P., da Cunha, T., da Silva, A.C., Kupper, K.C. (2016). Biocontrol ability and putative mode of action of yeasts against Geotrichum citri aurantii in citrus fruit. Microbiol Res, 188–189: 72–79. doi:10.1016/j.micres.2016.04.012.
  • Gajbhiye, M.H., Sathe, S.J., Marathe, R.J., Deshmukh, R.B. (2013). Antifungal Bacillus subtilis AFB22 from pomegranate with potential to control fruit rot. Res J Biotechnol, 8(3): 26–35.
  • Gong, C., Liu, Y., Liu, S., Cheng, M., Zhang, Y., Wang, R., Chen, H., Li, J., Chen, X., Wang, A. (2017). Analysis of Clonostachys rosea-induced resistance to grey mould disease and identification of the key proteins induced in tomato fruit. Postharvest Biol Technol, 123: 83–93. doi: 10.1016/j.postharvbio.2016.08.004.
  • Gotor-Vila, A., Teixidó, N., Di Francesco, A., Usall, J., Ugolini, L., Torres, R., Mari, M. (2017). Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiol, 64: 219–225. doi:10.1016/j.fm.2017.01.006.
  • González-Estrada, R. R., Carvajal-Millán, E., Ragazzo-Sánchez, J. A., Bautista-Rosales, P. U., Calderón-Santoyo, M. (2017). Control of blue mold decay on Persian lime: Application of covalently cross-linked arabinoxylans bioactive coatings with antagonistic yeast entrapped. J Food Sci Technol, 85(A): 187-196. doi: 10.1016/j.lwt.2017.07.019.
  • Hossain, M. I., Sadekuzzaman, M., Ha, S. D. (2017). Probiotics as potential alternative biocontrol agents in the agriculture and food industries. Food Res Int, 100(1): 63-73. doi: 10.1016/j.foodres.2017.07.077.
  • Ippolito, A., Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruit and vegetables. Crop Protection, 19 (8/10): 715–723. doi: 10.1016/S0261-2194(00)00095-8.
  • Kang, Y., Bai, D., Tapia, L., Bateman, H. (2017). Dynamical effects of biocontrol on the ecosystem: Benefits or harm? Appl Math Model, 51: 361-385 doi: 10.1016/j.apm.2017.07.006.
  • Karabulut, O. A., Smilanick, J. L., Crisosto, C. H., and Palou, L. (2010). Control of brown rot of stone fruits by brief heated water immersion treatments. Crop Protection, 29(8): 903-906.
  • Kalogiannis, S., Tjamos, S.E., Stergiou, A., Antoniou, P.P., Ziogas, B.N., Tjamos, E.C. (2006). Selection and evaluation of phyllosphere yeasts as biocontrol agents against grey mould of tomato. Eur J Plant Pathol, 116(1): 69–76. doi: 10.1007/s10658-006-9040-5.
  • Kim, Y.S., Balaraju, K., Jeon, Y. (2016). Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits. J Zhejiang Univ Sci B, 17(12): 931–940. doi:10.1631/jzus.B1600117.
  • Kilani-Feki, O., Khedher, S.B., Dammak, M., Kamoun, A., Jabnoun-Khiareddine, H., Daami-Remadi, M., Tounsi, S. (2016). Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease. Biol Control, 95: 73–82. doi:10.1016/j.biocontrol.2016.01.005.
  • Kwasiborski, A., Bajji, M., Renaut, J., Delaplace, P., Jijakli, H. (2014). Identification of metabolic pathways expressed by Pichia anomala Kh6 in the presence of the pathogen Botrytis cinerea on apple: new possible targets for biocontrol improvement. Plos One, 9(3): e91434. doi: 0.1371/journal.pone.0091434.
  • Lamont, J.R., Wilkins, O., Bywater-Ekegärd, M., Smith, D. L. (2017). From yogurt to yields: potential applications of lactic acid bacteria in plant production. Soil Biol Biochem, 111: 1-9. doi: 10.1016/j.soilbio.2017.03.015.
  • Junior W. J. F. L, Treu L., Duarte V. S., Campanaro S., Nadai C., Giacomini A., Coricha V. (2017). Draft Genome Sequence of the Yeast Starmerella bacillaris (syn., Candida zemplinina) FRI751 Isolated from Fermenting Must of Dried Raboso Grapes. Genome Announc, 5(17): e00224-17. doi:10.1128/genomeA.00224-17.
  • Li, W., Zhang, H., Li, P., Apaliya, M.T., Yang, Q., Peng, Y., Zhang, X. (2016). Biocontrol of postharvest green mold of oranges by Hanseniaspora uvarum Y3 in combination with phosphatidylcholine. Biol Control, 103: 30-38. doi: 10.1016/j.biocontrol.2016.07.014.
  • Lipinska, L., Klewicki, R., Klewicka, E., Kolodziejczyk, K., Sojka, M., Nowak, A. (2016). Antifungal Activity of Lactobacillus sp Bacteria in the Presence of Xylitol and Galactosyl Xylitol. Biomed Res Int, 2016: 8. doi: 10.1155/2016/5897486.
  • Li, B.Q., Tian, S.P. (2006). Effects of trehalose on stress tolerance and biocontrol efficacy of Cryptococcus laurentii. J Appl Microbio, 100(4): 854–861. doi: 10.1111/j.1365-2672.2006.02852.x.
  • Liu, J., Wisniewski, M., Droby, S., Tian, S., Hershkovitz, V., Tworkoski, T. (2011). Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola. FEMS Microbiol Ecol, 76(1): 145-155. doi: 10.1111/j.1574-6941.2010.01037.x
  • Liu, J., Wisniewski, M., Droby, S., Norelli, J., Hershkovitz, V., Tian, S., Farrell, R. (2012). Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure. FEMS Microbiol Ecol, 80(3): 578-590. doi: 10.1111/j.1574-6941.2012.01324.x.
  • Liu, J., Wisniewski, M., Artlip, T., Sui, Y., Droby, S., Norelli, J. (2013). The potential role of PR-8 gene of apple fruit in the mode of action of the yeast antagonist, Candida oleophila, in postharvest biocontrol of Botrytis cinerea. Postharvest Biol Technol, 85: 203-209.doi: 10.1016/j.postharvbio.2013.06.007.
  • Liu, P., Cheng, Y., Yang, M., Liu, Y., Chen, K., Long, C. Deng X. (2014). Mechanisms of action for 2-phenylethanol isolated from Kloeckera apiculata in control of Penicillium molds of citrus fruits. BMC Microbiol, 14: 242. doi: 10.1186/s12866-014-0242-2.
  • Liu, Y., Wang, W., Zhou, Y., Yao, S., Deng, L., Zeng, K. (2017). Isolation, identification and in vitro screening of Chongqing orangery yeasts for the biocontrol of Penicillium digitatum on citrus fruit. Biol Control, 110: 18-24. doi: 10.1016/j.biocontrol.2017.04.002.
  • Macarisin, D., Droby, S., Bauchan, G., Wisniewski, M. (2010). Superoxide anion and hydrogen peroxide in the yeast antagonist–fruit interaction: a new role for reactive oxygen species in postharvest biocontrol? Postharvest Biol Technol, 58(3): 194–202. doi: 10.1016/j.postharvbio.2010.07.008
  • Mahunu, G. K., Zhang, H., Yang, Q., Zhang, X., Li, D., Zhou, Y. (2016). Improving the biocontrol efficacy of Pichia caribbica with phytic acid against postharvest blue mold and natural decay in apples. Biol Control, 92: 172-180. doi: 10.1016/j.biocontrol.2015.10.012.
  • Massart, S., Jijakli, M.H., (2014). Pichia anomala and Candida oleophila in biocontrol of postharvest diseases of fruits: 20 years of fundamental and practical research. In: Post-Harvest Pathology. Plant Pathology in the 21st Century: Contributions to the 10th International Congress of Plant Pathology, Prusky, D., Gullino, M.L. (chief eds.), , Volume 7. Springer, The Netherlands, pp. 111–122. doi: 10.1007/978-3-319-07701-7_10
  • Nagaraja, H., Chennappa, G., Rakesh, S., Naik, M.K., Amaresh, Y.S., Sreenivasa, M.Y. (2016). Antifungal activity of Azotobacter nigricans against trichothecene-producing Fusarium species associated with cereals. Food Sci Biotechnol, 25(4): 1197–1204. doi: 10.1007/s10068-016-0190-8.
  • Nally, M. C., Pesce, V. M., Maturano, Y. P., Rodriguez Assaf, L. A., Toro, M. E., Castellanos de Figueroa, L. I., Vazquez, F. (2015). Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots. Int J Food Microbiol, 204: 91-100.
  • Nunes, C.A. (2012) . Biological control of postharvest diseases of fruit. Eur. J. Plant Pathol, 133(1): 181–196. doi: 10.1007/s10658-011-9919-7.
  • Oregel-Zamudio, E., Angoa-Pérez, M. V., Oyoque-Salcedo, G., Aguilar-González, C. N., Mena-Violante, H. G. (2017). Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life. Sci Hortic, 214: 273-279. doi: 10.1016/j.scienta.2016.11.038.
  • Pantelides, I.S., Christou, O., Tsolakidou, M.-D., Tsaltas, D., Ioannou, N. (2015). Isolation, identification and in vitro screening of grapevine yeasts for the control of black aspergilli on grapes. Biol Control, 88: 46–53. doi: 10.1016/j.biocontrol.2015.04.021.
  • Parafati, L., Vitale, A., Restuccia, C., Cirvilleri, G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol, 47: 85–92. doi: 10.1016/j.fm.2014.11.013
  • Parafati L., Vitale A., Restuccia C., Cirvilleri G. (2017). "Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays." Food Microbiol, 63: 191-198. doi: 10.1016/j.fm.2016.11.021.
  • Passera, A., Venturini, G., Battelli, G., Casati, P., Penaca, F., Quaglino, F., Bianco, P.A. (2017). Competition assays revealed Paenibacillus pasadenensis strain R16 as a novel antifungal agent. Microbiol Res, 198: 16–26. doi:10.1016/j.micres.2017.02.001.
  • Prendesa P. L., Merín G. M., Fontana R. A., Bottini A. R., Ramirez L. M., Morata de Ambrosini I. V. (2018). "Isolation, identification and selection of antagonistic yeast against Alternaria alternata infection and tenuazonic acid production in wine grapes from Argentina." Int J Food Microbiol, 266: 14-20. doi: 10.1016/j.ijfoodmicro.2017.10.033.
  • Pesce, V. M., Nally, M. C., Carrizo, G. P., Rojo, C., Pérez, B. A., Toro, M. E., Castellanos de Figueroa, L. I., Vazquez, F. (2018). Antifungal activity of native yeasts from different microenvironments against Colletotrichum gloeosporioides on ripe olive fruits. Biol Control, 120: 43-51. doi: 10.1016/j.biocontrol.2017.03.005.
  • Perez, M. F., Perez Ibarreche, J., Isas, A. S., Sepulveda, M., Ramallo, J., Dib, J. R. (2017). Antagonistic yeasts for the biological control of Penicillium digitatum on lemons stored under export conditions. Biol Control, 115: 135-140. doi: 10.1016/j.biocontrol.2017.10.006.
  • Perez, M.F., Contreras, L., Garnica, N.M., Fernández-Zenoff, M.V., Farías, M.E., Sepulveda, M., Ramallo, J., Dib, J.R. (2016). Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. Plos One, 11(10): e-0165590. doi: 10.1371/journal.pone.0165590.
  • Romanazzi, G., Feliziani, E., Baños, S. B., Sivakumar, D. (2017). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Crit Rev Food Sci Nutr, 57(3): 579-601. doi: 10.1080/10408398.2014.900474.
  • Ruiz-Moyano, S., Martín, A., Villalobos, M. C., Calle, A., Serradilla, M. J., Córdoba, M. G., Hernández, A. (2016). Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Food Microbiol, 57: 45-53. doi: 10.1016/j.fm.2016.01.003.
  • Spadaro, D., Lorè, A., Garibaldi, A., Gullino, L. M. (2013). A new strain of Metschnikowia fructicola for postharvest control of Penicillium expansum and patulin accumulation on four cultivars of apple. Postharvest Biol Technol, 75: 1-8. doi: 10.1016/j.postharvbio.2012.08.001.
  • Salas, M. L., Mounier, J., Valence, F., Coton, M., Thierry, A., Coton, E. (2017). Antifungal Microbial Agents for Food Biopreservation. Microorganisms, 5(3). doi: 10.3390/microorganisms5030037.
  • Qin, X., Xiao, H., Xue, C., Yu, Z., Yang, R., Cai, Z., Si, L. (2015). Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biol Technol, 100: 160–167. doi: 10.1016/j.postharvbio.2014.09.010.
  • Qin, G.Z., Tian, S.P., Xu, Y., Wan, Y.K. (2003). Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiol Mol Plant Pathol, 62(3): 147–154. doi: 10.1016/S0885-5765(03)00046-8.
  • Saravanakumar, D., Clavorella, A., Spadaro, D., Garibaldi, A., Gullino, M. L. (2008). Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biol Technol, 49(1): 121-128. doi: 10.1016/j.postharvbio.2007.11.006.
  • Sharma, R. R., Singh, D., Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists. Biol Control, 50(3): 205-221. doi: 10.1016/j.biocontrol.2009.05.001
  • Spadaro, D., Ciavorella, A., Zhang, D., Garibaldi, A., Gullino, M. L. (2010). Effect of culture media and pH on the biomass production and biocontrol efficacy of a Metschnikowia pulcherrima strain to be used as a biofungicide for postharvest disease control. Can J Microbiol, 56(2): 128-137. doi: 10.1139/w09-117.
  • Spadaro, D., Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol, 47: 39-49. doi: 10.1016/j.tifs.2015.11.003.
  • Sui, Y., Liu, J. (2014). Effect of glucose on thermotolerance and biocontrol efficaciy of the antagonistic yeast Pichia guilliermondii. Biol Control, 74: 59-64. doi: 10.1016/j.biocontrol.2014.04.003.
  • Sun, C., Fu, D., Lu, H., Zhang, J., Zheng, X., Yu, T. (2018). Autoclaved yeast enhances the resistance against Penicillium expansum in postharvest pear fruit and its possible mechanisms of action. Biol Control, 119: 51-58. doi: 0.1016/j.biocontrol.2018.01.010.
  • Tang, J., Liu, Y., Li, H., Wang, L., Huang, K., Chen, Z. (2015). Combining an antagonistic yeast with harpin treatment to control postharvest decay of kiwifruit. Biol Control, 89: 61-67. doi: 10.1016/j.biocontrol.2015.04.025.
  • Terao, D., Nechet, K., Ponte, S. M., Maia, N. A., Anjos, D. A. V., Halfed- Vieria A. B. (2017). "Physical postharvest treatments combined with antagonistic yeast on the control of orange green mold." Sci Hortic, 224: 317-323. doi: 10.1016/j.scienta.2017.06.038.
  • Teixidó, N., Viñas, I., Usall, J., Magan, N., (1998). Improving ecological fitness and environmental stress tolerance of the biocontrol yeast Candida sake by manipulation of intracellular sugar alcohol and sugar content. Mycol Res, 102(11): 1409–1417. doi: 10.1017/S0953756298006716.
  • Usall, J., Torres, R., Teixidó, N. (2016). Biological control of postharvest diseases on fruit: a suitable alternative? Curr Opin Food Sci, 11: 51-55. doi: 10.1016/j.cofs.2016.09.002.
  • Yang, Q., Wang, H., Zhang, H., Zhang, X., Apaliya, M.T., Zheng, X., Mahunu, G.K. (2017). Effect of Yarrowia lipolytica on postharvest decay of grapes caused by Talaromyces rugulosus and the protein expression profile of T. rugulosus. Postharvest Biol Technol, 126: 15–22. doi: 10.1016/j.postharvbio.2016.11.015.
  • Vero, S., Garmendia, G., González, M. B., Bentancu, O., Wisniewski, M. (2013). Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus x domestica). FEMS Yeast Res, 13(2), 189-199.
  • Wang, Y., Wang, P., Xia, J., Yu, T., Luo, B., Wang, J., Zheng, X. (2010). Effect of water activity on stress tolerance and biocontrol activity in antagonistic yeast Rhodosporidium paludigenum. Int J Food Microbiol, 143(3): 103-108. doi: 10.1016/j.ijfoodmicro.2010.07.035.
  • Wei, Y., Mao, S., Tu, K. (2014). Effect of preharvest spraying Cryptococcus laurentii on postharvest decay and quality of strawberry. Biol Control , 73: 68–74. doi: 10.1016/j.biocontrol.2014.02.016.
  • Xu, X., Zhang, H., Chen, K., Xu, Q., Yao, Y., Gao, H. (2013). Biocontrol of postharvest Rhizopus decay of peaches with Pichia caribbica. Curr Microbiol, 67(2): 255-261. doi: 10.1007/s00284-013-0359-9.
  • Zhao, Y., Tu, K., Shao, X., Jing, W., Su, Z., (2008). Effects of the yeast Pichia guilliermondii against Rhizopus nigricans on tomato fruit. Postharvest Biol Technol, 49 (1): 113–120. doi: 10.1016/j.postharvbio.2008.01.001.
  • Zhang, C.H., Li, Y., Liu, P., Liu, M.J. (2015). Identification of two Bacillus amyloliquefaciens strains with high suppression to the key fruit pathogens of Chinese jujube. Biocontrol Sci Technol, 25(5): 573–582. doi: 10.1080/09583157.2014.997675.
  • Zhang, Z., Chen, J., Li, B., He, C., Chen, Y., Tian, S. (2017). Influence of Oxidative Stress on Biocontrol Activity of Cryptococcus laurentii against Blue Mold on Peach Fruit. Front Microbiol, 8: 151. doi:10.3389/fmicb.2017.00151.
  • Zhou, Y., Zhang, L., Zeng, K. (2016). Efficacy of Pichia membranaefaciens combined with chitosan against Colletotrichum gloeosporioides in citrus fruits and possible modes of action. Biol Control, 96: 39–47. doi: 10.1016/j.biocontrol.2016.02.001.
  • Zhimo, V.Y., Dilip, D., Sten, J., Ravat, V.K., Bhutia, D.D., Panja, B., Saha, J. (2017). Antagonistic Yeasts for Biocontrol of the Banana Postharvest Anthracnose Pathogen Colletotrichum musae. J. Phytopathol, 165(1): 35–43. doi: 10.1111/jph.12533

MEYVE VE SEBZELERDE HASAT SONRASI FUNGAL HASTALIKLARIN ANTAGONİSTİK MAYALAR İLE BİYOKONTROLÜ

Yıl 2019, Cilt: 44 Sayı: 1, 31 - 49, 15.02.2019
https://doi.org/10.15237/gida.GD18082

Öz

Dünya genelinde taze meyve ve sebzelerde meydana gelen
ve %50 oranına kadar ulaşabilen önemli kayıplar çoğunlukla hasat sonrası
hastalıklardan kaynaklanmaktadır. Günümüzde, hasat sonrası hastalıklara neden
olan patojenlerin kontrolünde sentetik fungusit kullanımı ön plana çıkmaktadır.
Ancak, toplumun gıda zincirinde kimyasal kalıntıyı azaltma isteği ve fungusit
dirençli patojenlerin gelişmesi hasat sonrası hastalıkların kontrolünde etkili
ve güvenilir yeni kontrol stratejilerinin araştırılmasına yol açmıştır. Hasat
edilen meyve ve sebzelerde meydana gelen kayıpların azaltılması amacıyla
sentetik fungusit kullanımına alternatif olarak biyokontrol ajanların kullanımı
umut verici bir yöntem olarak ortaya çıkmıştır. Biyokontrol amacıyla kullanılan
çeşitli mikrobiyel ajanlar arasından özellikle mayaların önemi genellikle antibiyotik
üretmemeleri, çok sayıda patojene karşı etkili olmaları vs. gibi birçok olumlu
özelliğinden dolayı vurgulanmıştır. Bu derlemede; meyve-sebzelerde meydana
gelen hasat sonrası hastalıklar, biyokontrol, antagonist ve fungal patojenler
hakkında bilgi verilmiş, antagonizm mekanizmaları, mikrobiyel antagonistlerin
biyoetkinliklerini arttırma yöntemleri ve mikrobiyel antagonistlerin ticari
uygulamaları detaylı bir şekilde ele alınmış ve literatürde yapılan son
çalışmalar özetlenmiştir.

Kaynakça

  • Aloui, H., Licciardello, F., Khwaldia, K., Hamdi, M., Restuccia, C. (2015). Physical properties and antifungal activity of bioactive films containing Wickerhamomyces anamolus killer yeast and their application for preservation of oranges and control of postharvest green mold caused by Penicillium digitatum. Int J Food Microbiol, 200: 22-30. doi: 10.1016/j.ijfoodmicro.2015.01.015.
  • Anonim, (2017). Türkiye Cumhuriyeti Ekonomi Bakanlığı. Yaş Meyve ve Sebze Sektörü: Sektör Raporları. İhracat Genel Müdürlüğü Tarım Ürünleri Daire Başkanlığı.
  • Arras, G., de-Cicco, V., Arru, S., Lima, G., (1998). Biocontrol by yeasts of blue mold of citrus fruits and the mode of action of an isolate of Pichia guilliermondii. J Hortic Sci, 73(3): 413–418. doi: 10.1080/14620316.1998.11510993.
  • Bautista-Rosales, P. U., Calderon-Santoyo, M., Servín-Villegas, R., Ochoa-Álvarez, N. A., Ragazzo-Sánchez, J. A. (2013). Action mechanisms of the yeast Candida fermentati for the control of thephytopathogen Colletotrichum gloeosporioides in mangoes. Biol Control, 65(3): 293-301. doi: 10.1016/j.biocontrol.2013.03.010.
  • Calvo, H., Marco, P., Blanco, D., Oria, R., Venturini, M.E. (2017). Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiol, 63: 101–110. doi: 10.1016/j.fm.2016.11.004.
  • Campos-Martínez, A., Velázquez-del Valle, M.G., Flores-Moctezuma, H.E., Suárez-Rodríguez, R., Ramírez-Trujillo, J.A., Hernández-Lauzardo, A.N. (2016). Antagonistic yeasts with potential to control Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. and Colletotrichum acutatum J.H. Simmonds on avocado fruits. Crop Prot, 89: 101–104. doi: 10.1094/PDIS-10-14-1019-PDN.
  • Cao, J., Zhang, H., Yang, Q., Ren, R. (2013). Efficacy of Pichia caribbica in controlling blue mold rot and patulin degradation in apples. Int J Food Microbiol, 162(2): 167 173. doi: 10.1016/j.ijfoodmicro.2013.01.007.
  • Castoria, R., Caputo, L., De Curtis, F., De Cicco, V. (2003). Resistance of postharvest biocontrol yeasts to oxidative stress: a possible new mechanism of action. Phytopathology, 93(5): 564–572. doi: 10.1094/PHYTO.2003.93.5.564.
  • de Paiva, E., Serradilla, M. J., Ruiz-Moyano, S., Cordoba, M. G., Villalobos, M. C., Casquete, R., Hernandez, A. (2017). Combined effect of antagonistic yeast and modified atmosphere to control Penicillium expansum infection in sweet cherries cv. Ambrunes. Int J Food Microbiol, 241: 276-282. doi: 10.1016/j.ijfoodmicro.2016.10.033.
  • Di Francesco, A., Ugolini, L., Lazzeri, L., Mari, M. (2015). Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol Conrol, 81: 8-14. doi: 10.1016/j.biocontrol.2014.10.004.
  • Droby, S., Wisniewski, M., Macarisin, D., Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol Technol, 52(2): 137-145. doi: 10.1016/j.postharvbio.2008.11.009.
  • Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., Jijakli, M. H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol Technol, 122: 22-29. doi: 10.1016/j.postharvbio.2016.04.006.
  • EFSA, 2014. The 2011 European Union report on pesticide residues in food. EFSA J. 12(5), 3694, Parma, Italy.
  • EFSA (2016). Panel on Biological Hazards (BIOHAZ). Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 4: Suitability of taxonomic units notified to EFSA until March 2016. Efsa J, 14(7): 4522. doi: 10.2903/j.efsa.2016.4522.
  • FAO. (2011). Global food losses and food waste: extent, causes and prevention. http://www.fao.org/docrep/014/mb060e/mb060e.pdf (Erişildi 21 Mayıs 2018).
  • FDA. (2018). Generally Recagnized as Safe (GRAS). https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/ (Erişildi 21 Mayıs 2018).
  • Ferraz, L.P., da Cunha, T., da Silva, A.C., Kupper, K.C. (2016). Biocontrol ability and putative mode of action of yeasts against Geotrichum citri aurantii in citrus fruit. Microbiol Res, 188–189: 72–79. doi:10.1016/j.micres.2016.04.012.
  • Gajbhiye, M.H., Sathe, S.J., Marathe, R.J., Deshmukh, R.B. (2013). Antifungal Bacillus subtilis AFB22 from pomegranate with potential to control fruit rot. Res J Biotechnol, 8(3): 26–35.
  • Gong, C., Liu, Y., Liu, S., Cheng, M., Zhang, Y., Wang, R., Chen, H., Li, J., Chen, X., Wang, A. (2017). Analysis of Clonostachys rosea-induced resistance to grey mould disease and identification of the key proteins induced in tomato fruit. Postharvest Biol Technol, 123: 83–93. doi: 10.1016/j.postharvbio.2016.08.004.
  • Gotor-Vila, A., Teixidó, N., Di Francesco, A., Usall, J., Ugolini, L., Torres, R., Mari, M. (2017). Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiol, 64: 219–225. doi:10.1016/j.fm.2017.01.006.
  • González-Estrada, R. R., Carvajal-Millán, E., Ragazzo-Sánchez, J. A., Bautista-Rosales, P. U., Calderón-Santoyo, M. (2017). Control of blue mold decay on Persian lime: Application of covalently cross-linked arabinoxylans bioactive coatings with antagonistic yeast entrapped. J Food Sci Technol, 85(A): 187-196. doi: 10.1016/j.lwt.2017.07.019.
  • Hossain, M. I., Sadekuzzaman, M., Ha, S. D. (2017). Probiotics as potential alternative biocontrol agents in the agriculture and food industries. Food Res Int, 100(1): 63-73. doi: 10.1016/j.foodres.2017.07.077.
  • Ippolito, A., Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruit and vegetables. Crop Protection, 19 (8/10): 715–723. doi: 10.1016/S0261-2194(00)00095-8.
  • Kang, Y., Bai, D., Tapia, L., Bateman, H. (2017). Dynamical effects of biocontrol on the ecosystem: Benefits or harm? Appl Math Model, 51: 361-385 doi: 10.1016/j.apm.2017.07.006.
  • Karabulut, O. A., Smilanick, J. L., Crisosto, C. H., and Palou, L. (2010). Control of brown rot of stone fruits by brief heated water immersion treatments. Crop Protection, 29(8): 903-906.
  • Kalogiannis, S., Tjamos, S.E., Stergiou, A., Antoniou, P.P., Ziogas, B.N., Tjamos, E.C. (2006). Selection and evaluation of phyllosphere yeasts as biocontrol agents against grey mould of tomato. Eur J Plant Pathol, 116(1): 69–76. doi: 10.1007/s10658-006-9040-5.
  • Kim, Y.S., Balaraju, K., Jeon, Y. (2016). Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits. J Zhejiang Univ Sci B, 17(12): 931–940. doi:10.1631/jzus.B1600117.
  • Kilani-Feki, O., Khedher, S.B., Dammak, M., Kamoun, A., Jabnoun-Khiareddine, H., Daami-Remadi, M., Tounsi, S. (2016). Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease. Biol Control, 95: 73–82. doi:10.1016/j.biocontrol.2016.01.005.
  • Kwasiborski, A., Bajji, M., Renaut, J., Delaplace, P., Jijakli, H. (2014). Identification of metabolic pathways expressed by Pichia anomala Kh6 in the presence of the pathogen Botrytis cinerea on apple: new possible targets for biocontrol improvement. Plos One, 9(3): e91434. doi: 0.1371/journal.pone.0091434.
  • Lamont, J.R., Wilkins, O., Bywater-Ekegärd, M., Smith, D. L. (2017). From yogurt to yields: potential applications of lactic acid bacteria in plant production. Soil Biol Biochem, 111: 1-9. doi: 10.1016/j.soilbio.2017.03.015.
  • Junior W. J. F. L, Treu L., Duarte V. S., Campanaro S., Nadai C., Giacomini A., Coricha V. (2017). Draft Genome Sequence of the Yeast Starmerella bacillaris (syn., Candida zemplinina) FRI751 Isolated from Fermenting Must of Dried Raboso Grapes. Genome Announc, 5(17): e00224-17. doi:10.1128/genomeA.00224-17.
  • Li, W., Zhang, H., Li, P., Apaliya, M.T., Yang, Q., Peng, Y., Zhang, X. (2016). Biocontrol of postharvest green mold of oranges by Hanseniaspora uvarum Y3 in combination with phosphatidylcholine. Biol Control, 103: 30-38. doi: 10.1016/j.biocontrol.2016.07.014.
  • Lipinska, L., Klewicki, R., Klewicka, E., Kolodziejczyk, K., Sojka, M., Nowak, A. (2016). Antifungal Activity of Lactobacillus sp Bacteria in the Presence of Xylitol and Galactosyl Xylitol. Biomed Res Int, 2016: 8. doi: 10.1155/2016/5897486.
  • Li, B.Q., Tian, S.P. (2006). Effects of trehalose on stress tolerance and biocontrol efficacy of Cryptococcus laurentii. J Appl Microbio, 100(4): 854–861. doi: 10.1111/j.1365-2672.2006.02852.x.
  • Liu, J., Wisniewski, M., Droby, S., Tian, S., Hershkovitz, V., Tworkoski, T. (2011). Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola. FEMS Microbiol Ecol, 76(1): 145-155. doi: 10.1111/j.1574-6941.2010.01037.x
  • Liu, J., Wisniewski, M., Droby, S., Norelli, J., Hershkovitz, V., Tian, S., Farrell, R. (2012). Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure. FEMS Microbiol Ecol, 80(3): 578-590. doi: 10.1111/j.1574-6941.2012.01324.x.
  • Liu, J., Wisniewski, M., Artlip, T., Sui, Y., Droby, S., Norelli, J. (2013). The potential role of PR-8 gene of apple fruit in the mode of action of the yeast antagonist, Candida oleophila, in postharvest biocontrol of Botrytis cinerea. Postharvest Biol Technol, 85: 203-209.doi: 10.1016/j.postharvbio.2013.06.007.
  • Liu, P., Cheng, Y., Yang, M., Liu, Y., Chen, K., Long, C. Deng X. (2014). Mechanisms of action for 2-phenylethanol isolated from Kloeckera apiculata in control of Penicillium molds of citrus fruits. BMC Microbiol, 14: 242. doi: 10.1186/s12866-014-0242-2.
  • Liu, Y., Wang, W., Zhou, Y., Yao, S., Deng, L., Zeng, K. (2017). Isolation, identification and in vitro screening of Chongqing orangery yeasts for the biocontrol of Penicillium digitatum on citrus fruit. Biol Control, 110: 18-24. doi: 10.1016/j.biocontrol.2017.04.002.
  • Macarisin, D., Droby, S., Bauchan, G., Wisniewski, M. (2010). Superoxide anion and hydrogen peroxide in the yeast antagonist–fruit interaction: a new role for reactive oxygen species in postharvest biocontrol? Postharvest Biol Technol, 58(3): 194–202. doi: 10.1016/j.postharvbio.2010.07.008
  • Mahunu, G. K., Zhang, H., Yang, Q., Zhang, X., Li, D., Zhou, Y. (2016). Improving the biocontrol efficacy of Pichia caribbica with phytic acid against postharvest blue mold and natural decay in apples. Biol Control, 92: 172-180. doi: 10.1016/j.biocontrol.2015.10.012.
  • Massart, S., Jijakli, M.H., (2014). Pichia anomala and Candida oleophila in biocontrol of postharvest diseases of fruits: 20 years of fundamental and practical research. In: Post-Harvest Pathology. Plant Pathology in the 21st Century: Contributions to the 10th International Congress of Plant Pathology, Prusky, D., Gullino, M.L. (chief eds.), , Volume 7. Springer, The Netherlands, pp. 111–122. doi: 10.1007/978-3-319-07701-7_10
  • Nagaraja, H., Chennappa, G., Rakesh, S., Naik, M.K., Amaresh, Y.S., Sreenivasa, M.Y. (2016). Antifungal activity of Azotobacter nigricans against trichothecene-producing Fusarium species associated with cereals. Food Sci Biotechnol, 25(4): 1197–1204. doi: 10.1007/s10068-016-0190-8.
  • Nally, M. C., Pesce, V. M., Maturano, Y. P., Rodriguez Assaf, L. A., Toro, M. E., Castellanos de Figueroa, L. I., Vazquez, F. (2015). Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots. Int J Food Microbiol, 204: 91-100.
  • Nunes, C.A. (2012) . Biological control of postharvest diseases of fruit. Eur. J. Plant Pathol, 133(1): 181–196. doi: 10.1007/s10658-011-9919-7.
  • Oregel-Zamudio, E., Angoa-Pérez, M. V., Oyoque-Salcedo, G., Aguilar-González, C. N., Mena-Violante, H. G. (2017). Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life. Sci Hortic, 214: 273-279. doi: 10.1016/j.scienta.2016.11.038.
  • Pantelides, I.S., Christou, O., Tsolakidou, M.-D., Tsaltas, D., Ioannou, N. (2015). Isolation, identification and in vitro screening of grapevine yeasts for the control of black aspergilli on grapes. Biol Control, 88: 46–53. doi: 10.1016/j.biocontrol.2015.04.021.
  • Parafati, L., Vitale, A., Restuccia, C., Cirvilleri, G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol, 47: 85–92. doi: 10.1016/j.fm.2014.11.013
  • Parafati L., Vitale A., Restuccia C., Cirvilleri G. (2017). "Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays." Food Microbiol, 63: 191-198. doi: 10.1016/j.fm.2016.11.021.
  • Passera, A., Venturini, G., Battelli, G., Casati, P., Penaca, F., Quaglino, F., Bianco, P.A. (2017). Competition assays revealed Paenibacillus pasadenensis strain R16 as a novel antifungal agent. Microbiol Res, 198: 16–26. doi:10.1016/j.micres.2017.02.001.
  • Prendesa P. L., Merín G. M., Fontana R. A., Bottini A. R., Ramirez L. M., Morata de Ambrosini I. V. (2018). "Isolation, identification and selection of antagonistic yeast against Alternaria alternata infection and tenuazonic acid production in wine grapes from Argentina." Int J Food Microbiol, 266: 14-20. doi: 10.1016/j.ijfoodmicro.2017.10.033.
  • Pesce, V. M., Nally, M. C., Carrizo, G. P., Rojo, C., Pérez, B. A., Toro, M. E., Castellanos de Figueroa, L. I., Vazquez, F. (2018). Antifungal activity of native yeasts from different microenvironments against Colletotrichum gloeosporioides on ripe olive fruits. Biol Control, 120: 43-51. doi: 10.1016/j.biocontrol.2017.03.005.
  • Perez, M. F., Perez Ibarreche, J., Isas, A. S., Sepulveda, M., Ramallo, J., Dib, J. R. (2017). Antagonistic yeasts for the biological control of Penicillium digitatum on lemons stored under export conditions. Biol Control, 115: 135-140. doi: 10.1016/j.biocontrol.2017.10.006.
  • Perez, M.F., Contreras, L., Garnica, N.M., Fernández-Zenoff, M.V., Farías, M.E., Sepulveda, M., Ramallo, J., Dib, J.R. (2016). Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. Plos One, 11(10): e-0165590. doi: 10.1371/journal.pone.0165590.
  • Romanazzi, G., Feliziani, E., Baños, S. B., Sivakumar, D. (2017). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Crit Rev Food Sci Nutr, 57(3): 579-601. doi: 10.1080/10408398.2014.900474.
  • Ruiz-Moyano, S., Martín, A., Villalobos, M. C., Calle, A., Serradilla, M. J., Córdoba, M. G., Hernández, A. (2016). Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Food Microbiol, 57: 45-53. doi: 10.1016/j.fm.2016.01.003.
  • Spadaro, D., Lorè, A., Garibaldi, A., Gullino, L. M. (2013). A new strain of Metschnikowia fructicola for postharvest control of Penicillium expansum and patulin accumulation on four cultivars of apple. Postharvest Biol Technol, 75: 1-8. doi: 10.1016/j.postharvbio.2012.08.001.
  • Salas, M. L., Mounier, J., Valence, F., Coton, M., Thierry, A., Coton, E. (2017). Antifungal Microbial Agents for Food Biopreservation. Microorganisms, 5(3). doi: 10.3390/microorganisms5030037.
  • Qin, X., Xiao, H., Xue, C., Yu, Z., Yang, R., Cai, Z., Si, L. (2015). Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biol Technol, 100: 160–167. doi: 10.1016/j.postharvbio.2014.09.010.
  • Qin, G.Z., Tian, S.P., Xu, Y., Wan, Y.K. (2003). Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiol Mol Plant Pathol, 62(3): 147–154. doi: 10.1016/S0885-5765(03)00046-8.
  • Saravanakumar, D., Clavorella, A., Spadaro, D., Garibaldi, A., Gullino, M. L. (2008). Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biol Technol, 49(1): 121-128. doi: 10.1016/j.postharvbio.2007.11.006.
  • Sharma, R. R., Singh, D., Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists. Biol Control, 50(3): 205-221. doi: 10.1016/j.biocontrol.2009.05.001
  • Spadaro, D., Ciavorella, A., Zhang, D., Garibaldi, A., Gullino, M. L. (2010). Effect of culture media and pH on the biomass production and biocontrol efficacy of a Metschnikowia pulcherrima strain to be used as a biofungicide for postharvest disease control. Can J Microbiol, 56(2): 128-137. doi: 10.1139/w09-117.
  • Spadaro, D., Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol, 47: 39-49. doi: 10.1016/j.tifs.2015.11.003.
  • Sui, Y., Liu, J. (2014). Effect of glucose on thermotolerance and biocontrol efficaciy of the antagonistic yeast Pichia guilliermondii. Biol Control, 74: 59-64. doi: 10.1016/j.biocontrol.2014.04.003.
  • Sun, C., Fu, D., Lu, H., Zhang, J., Zheng, X., Yu, T. (2018). Autoclaved yeast enhances the resistance against Penicillium expansum in postharvest pear fruit and its possible mechanisms of action. Biol Control, 119: 51-58. doi: 0.1016/j.biocontrol.2018.01.010.
  • Tang, J., Liu, Y., Li, H., Wang, L., Huang, K., Chen, Z. (2015). Combining an antagonistic yeast with harpin treatment to control postharvest decay of kiwifruit. Biol Control, 89: 61-67. doi: 10.1016/j.biocontrol.2015.04.025.
  • Terao, D., Nechet, K., Ponte, S. M., Maia, N. A., Anjos, D. A. V., Halfed- Vieria A. B. (2017). "Physical postharvest treatments combined with antagonistic yeast on the control of orange green mold." Sci Hortic, 224: 317-323. doi: 10.1016/j.scienta.2017.06.038.
  • Teixidó, N., Viñas, I., Usall, J., Magan, N., (1998). Improving ecological fitness and environmental stress tolerance of the biocontrol yeast Candida sake by manipulation of intracellular sugar alcohol and sugar content. Mycol Res, 102(11): 1409–1417. doi: 10.1017/S0953756298006716.
  • Usall, J., Torres, R., Teixidó, N. (2016). Biological control of postharvest diseases on fruit: a suitable alternative? Curr Opin Food Sci, 11: 51-55. doi: 10.1016/j.cofs.2016.09.002.
  • Yang, Q., Wang, H., Zhang, H., Zhang, X., Apaliya, M.T., Zheng, X., Mahunu, G.K. (2017). Effect of Yarrowia lipolytica on postharvest decay of grapes caused by Talaromyces rugulosus and the protein expression profile of T. rugulosus. Postharvest Biol Technol, 126: 15–22. doi: 10.1016/j.postharvbio.2016.11.015.
  • Vero, S., Garmendia, G., González, M. B., Bentancu, O., Wisniewski, M. (2013). Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus x domestica). FEMS Yeast Res, 13(2), 189-199.
  • Wang, Y., Wang, P., Xia, J., Yu, T., Luo, B., Wang, J., Zheng, X. (2010). Effect of water activity on stress tolerance and biocontrol activity in antagonistic yeast Rhodosporidium paludigenum. Int J Food Microbiol, 143(3): 103-108. doi: 10.1016/j.ijfoodmicro.2010.07.035.
  • Wei, Y., Mao, S., Tu, K. (2014). Effect of preharvest spraying Cryptococcus laurentii on postharvest decay and quality of strawberry. Biol Control , 73: 68–74. doi: 10.1016/j.biocontrol.2014.02.016.
  • Xu, X., Zhang, H., Chen, K., Xu, Q., Yao, Y., Gao, H. (2013). Biocontrol of postharvest Rhizopus decay of peaches with Pichia caribbica. Curr Microbiol, 67(2): 255-261. doi: 10.1007/s00284-013-0359-9.
  • Zhao, Y., Tu, K., Shao, X., Jing, W., Su, Z., (2008). Effects of the yeast Pichia guilliermondii against Rhizopus nigricans on tomato fruit. Postharvest Biol Technol, 49 (1): 113–120. doi: 10.1016/j.postharvbio.2008.01.001.
  • Zhang, C.H., Li, Y., Liu, P., Liu, M.J. (2015). Identification of two Bacillus amyloliquefaciens strains with high suppression to the key fruit pathogens of Chinese jujube. Biocontrol Sci Technol, 25(5): 573–582. doi: 10.1080/09583157.2014.997675.
  • Zhang, Z., Chen, J., Li, B., He, C., Chen, Y., Tian, S. (2017). Influence of Oxidative Stress on Biocontrol Activity of Cryptococcus laurentii against Blue Mold on Peach Fruit. Front Microbiol, 8: 151. doi:10.3389/fmicb.2017.00151.
  • Zhou, Y., Zhang, L., Zeng, K. (2016). Efficacy of Pichia membranaefaciens combined with chitosan against Colletotrichum gloeosporioides in citrus fruits and possible modes of action. Biol Control, 96: 39–47. doi: 10.1016/j.biocontrol.2016.02.001.
  • Zhimo, V.Y., Dilip, D., Sten, J., Ravat, V.K., Bhutia, D.D., Panja, B., Saha, J. (2017). Antagonistic Yeasts for Biocontrol of the Banana Postharvest Anthracnose Pathogen Colletotrichum musae. J. Phytopathol, 165(1): 35–43. doi: 10.1111/jph.12533
Toplam 80 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Bilal Ağırman Bu kişi benim 0000-0002-3629-1933

Meltem Necla Akalın Bu kişi benim

Hüseyin Erten 0000-0003-1537-2416

Yayımlanma Tarihi 15 Şubat 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 44 Sayı: 1

Kaynak Göster

APA Ağırman, B., Akalın, M. N., & Erten, H. (2019). MEYVE VE SEBZELERDE HASAT SONRASI FUNGAL HASTALIKLARIN ANTAGONİSTİK MAYALAR İLE BİYOKONTROLÜ. Gıda, 44(1), 31-49. https://doi.org/10.15237/gida.GD18082
AMA Ağırman B, Akalın MN, Erten H. MEYVE VE SEBZELERDE HASAT SONRASI FUNGAL HASTALIKLARIN ANTAGONİSTİK MAYALAR İLE BİYOKONTROLÜ. GIDA. Şubat 2019;44(1):31-49. doi:10.15237/gida.GD18082
Chicago Ağırman, Bilal, Meltem Necla Akalın, ve Hüseyin Erten. “MEYVE VE SEBZELERDE HASAT SONRASI FUNGAL HASTALIKLARIN ANTAGONİSTİK MAYALAR İLE BİYOKONTROLÜ”. Gıda 44, sy. 1 (Şubat 2019): 31-49. https://doi.org/10.15237/gida.GD18082.
EndNote Ağırman B, Akalın MN, Erten H (01 Şubat 2019) MEYVE VE SEBZELERDE HASAT SONRASI FUNGAL HASTALIKLARIN ANTAGONİSTİK MAYALAR İLE BİYOKONTROLÜ. Gıda 44 1 31–49.
IEEE B. Ağırman, M. N. Akalın, ve H. Erten, “MEYVE VE SEBZELERDE HASAT SONRASI FUNGAL HASTALIKLARIN ANTAGONİSTİK MAYALAR İLE BİYOKONTROLÜ”, GIDA, c. 44, sy. 1, ss. 31–49, 2019, doi: 10.15237/gida.GD18082.
ISNAD Ağırman, Bilal vd. “MEYVE VE SEBZELERDE HASAT SONRASI FUNGAL HASTALIKLARIN ANTAGONİSTİK MAYALAR İLE BİYOKONTROLÜ”. Gıda 44/1 (Şubat 2019), 31-49. https://doi.org/10.15237/gida.GD18082.
JAMA Ağırman B, Akalın MN, Erten H. MEYVE VE SEBZELERDE HASAT SONRASI FUNGAL HASTALIKLARIN ANTAGONİSTİK MAYALAR İLE BİYOKONTROLÜ. GIDA. 2019;44:31–49.
MLA Ağırman, Bilal vd. “MEYVE VE SEBZELERDE HASAT SONRASI FUNGAL HASTALIKLARIN ANTAGONİSTİK MAYALAR İLE BİYOKONTROLÜ”. Gıda, c. 44, sy. 1, 2019, ss. 31-49, doi:10.15237/gida.GD18082.
Vancouver Ağırman B, Akalın MN, Erten H. MEYVE VE SEBZELERDE HASAT SONRASI FUNGAL HASTALIKLARIN ANTAGONİSTİK MAYALAR İLE BİYOKONTROLÜ. GIDA. 2019;44(1):31-49.

Cited By

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/