Araştırma Makalesi
BibTex RIS Kaynak Göster

IMPROVED EXTRACTION OF BIOACTIVE COMPOUNDS FROM THE POLLENS OF TYPHA DOMINGENSIS WITH SEQUENTIAL CONVENTIONAL AND ULTRASOUND TREATMENT

Yıl 2023, Cilt: 48 Sayı: 2, 256 - 270, 15.04.2023
https://doi.org/10.15237/gida.GD22129

Öz

Typha domingensis pollen is obtained from staminate flowers of plant that is edible. In this study, bioactive compounds from pollen were extracted using ethanol and methanol with conventional method. Further ultrasonication was applied to the samples to improve extraction efficiency. The extraction yield was higher with ethanol (26.3±0.14%) than with methanol (25.4±0.3%) and applying ultrasonication increased the yields significantly (P <0.05). Total phenolic compounds in ethanol and methanol extracts were determined as 9.83±0.48 and 9.71±0.55 mg GAE/g dry matter with the conventional method, and 11.76±0.64 and 12.74±0.37 mg GAE/g dry matter after ultrasonication, respectively. The flavonoid content with ethanol extraction was significantly higher than with methanol in both conventional and ultrasonication methods (P <0.05). Antioxidant activities using DPPH, ABTS, CUPRAC, and FRAP tests, were determined, and enhanced antioxidant capacities were observed after ultrasonication. The bioactive compounds were qualitatively analyzed using UV-VIS spectroscopy and FTIR which confirmed the presence of polyphenols.

Kaynakça

  • Akkol, E.K., Suntar, I., Keles, H., Yesilada, E. (2011). The potential role of female flowers inflorescence of Typha domingensis Pers. in wound management. Journal of Ethnopharmacology, 133: 1027–1032, doi:10.1016/j.jep.2010.11.036.
  • Al-Bader, S.M. (2018). Characterization and evaluation of fungal growth medium composed pollens powder of cattail (Typha domingensis Pers.). Artículo De Investıgacıón Cıentífıca Y Tecnológıca, 6(1): 1-7, doi: 10.15649/2346075X.480.
  • Alhajali, O., Ali-Nizam, A. (2021). Phytochemical Screening and Antibacterial Activity of Pistacia atlantica and Pinus canariensis Leaf Extracts. Journal of the Turkish Chemical Society, 8(2): 403-418, doi:10.18596/jotcsa.836074.
  • Aljazy, N.A.S., Abdulstar, A.R., Alrakabi, J.M.F. (2021). Analytical Study of Phytochemicals and Antioxidant Activity of Pollen (Typha Domingensis Pers.) Extracted from The Papyrus Plant and Its Use in Cake Enrichment. Al-Qadisiyah Journal For Agriculture Sciences, 11(2): 126-136, doi:10.33794/qjas.2021.132392.1017.
  • Altemimi, A., Choudhary, R., Watson, D.G., Lightfoot, D.A. (2015). Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts. Ultrasonics Sonochemistry, 24: 247–25, doi: 10.1016/j.ultsonch.2014.10.023.
  • Altemimi, A., Watson, D.G., Choudhary, R., Dasari, M.R., Lightfoot, D.A. (2016). Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins. PLoS One, 11(2): 1-20, doi: 10.1371/journal.pone.0148758.
  • Apak, R., Güçlü, K., Ozyürek, M. and Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26): 7970–7981, doi:10.1021/jf048741x.
  • Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektaşoğlu, B., Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7): 1496-1547, doi: 10.3390/12071496.
  • Arenas, P., and Scarpa, G.F. (2003). The Consumption of Typha Doiıngensis Pers. (Typhaceae) Pollen Among The Ethnic Groups of the Gran Chaco, South America. Economic Botany, 57(2): 181-188.
  • Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R., Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4): 96, doi:10.3390/plants8040096.
  • Bansal, S. Lishawa, S.C. Newman S., Tangen, B.A., Wilcox, D., Albert, D. Anteau, M.J., Chimney M.J., Cressey, R.L., DeKeyser, E., Elgersma, K.J., Finkelstein, S.A., Freeland, F., Grosshans, R., Klug, P.E., Larkin, D.J., Lawrence, B.A., Linz, G., Marburger, J., Noe, G., Otto, C., Reo, N., Richards, J., Richardson, C., Rodgers, L., Schrank, A.J., Svedarsky, D., Travis, S., Tuchman, N., Windham-Myers, L. (2019). Typha (Cattail) Invasion in North American Wetlands: Biology, Regional Problems, Impacts, Ecosystem Services, and Management. Wetlands, 39: 645-684, doi: 10.1007/s13157-019-01174-7.
  • Barbero-Barrera, M.M., SalasRuiz, A., GalbisMorales, R. (2021). Mechanical and Physical Characterisation of Typha domingensis Based Thermal Insulation Boards for Developing Areas such as Nigeria. Waste and Biomass Valorization, 12: 5795–5806, doi: 10.1007/s12649-021-01410-4.
  • Batista, N.N., Andrade, D.P., Ramos, C.L., Dias, D.R., Schwani R.F. (2016). Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Research International, 90: 313-319, doi: 10.1016/j.foodres.2016.10.028.
  • Benzie, I.F.F. and Strain, J.J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1): 70–76, doi: 10.1006/abio.1996.0292.
  • Brand-Williams, W., Cuvelier, M.E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1): 25–30, doi: 10.1016/S0023-6438(95)80008-5.
  • Carvalho, J.D.T., and Mariath, J.E.A. (2019). Synflorescence morphology of species of Typha L. (Typhaceae): anatomical and ontogenetic bases for taxonomic applications. Acta Botanica Brasilica, 33(4): 672-682, doi: 10.1590/0102-33062019abb0140.
  • Chai, T.T., Mohan, M., Ong, H.C., Wong, F.C. (2014). Antioxidant, Iron chelating and Anti-glucosidase Activities of Typha domingensis Pers (Typhaceae). Tropical Journal of Pharmaceutical Research January, 13 (1): 67-72, doi: 10.4314/tjpr.v13i1.10.
  • Collazos-Escobar, G. A., Gutierrez-Guzman, N., Vaquiro-Herrera, H. A., Amorocho-Cruz, C. M. (2020). Moisture dynamic sorption isotherms and thermodynamic properties of parchment specialty coffee (Coffea arabica L.). Coffee Science, 15:e151684, doi: 10.25186/.v15i.1684.
  • Corbin, C., Fidel, T., Leclerc, E.A., Barakzoy, E., Sagot, N., Falguiéres, A., Renouard, S., Blondeau, J.P., Ferroud, C., Doussot, J., Lainé, E., Hano, C. (2015). Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrasonics Sonochemistry, 26: 176-185, doi: 10.1016/j.ultsonch.2015.02.008.
  • Corneanu, M., Corneanu, C.G., Constantin, C. Tripon, S.(2014). Phytoremediation of Some Heavy Metals and Radionuclides from a Polluted Area Located on The Middle Jiu River. Case Study: Typha Latıfolıa L. Oltenia. Studii şi comunicări. Ştiinţele Naturii. 30(2): 208-221.
  • Cruz, Y.C., Scarpa, A.L.M., Pereira, M.P., Castro, E.M., Pereira, F.J. (2019). Growth of Typha domingensis as related to leaf physiological and anatomical modifications under drought conditions. Acta Physiologiae Plantarum, 41(64): 1-9, doi: 10.1007/s11738-019-2858-1.
  • Dilshad, R., Khan, K.R., Saeed, L., Sherif, A.E., Ahmad, S., Ovatlarnporn, C., Nasim, J., Hussain, M., Ghalloo, B.A., Basit, A., Mukhtar, I. (2022). Chemical Composition and Biological Evaluation of Typha domingensis Pers. to Ameliorate Health Pathologies: In Vitro and In Silico Approaches. BioMed Research International, 8010395, doi: 10.1155/2022/8010395.
  • Egdhami, A., Sadeghi, F. (2010). Determination of total phenolic and flavonoids contents in methanolic and aqueous extract of Achillea millefolium. Organic Chemistry Journals, 2:81-84.
  • Eid, E.M., Galal, T.M., Shaltout, K.H., El-Sheikh, M.A., Asaeda, T., Alatar, A.A., Alfarhan, A.H., Alharthi, A., Alshehri, A.M.A., Picó, Y., Barcelo, D. (2020). Biomonitoring potential of the native aquatic plant Typha domingensis by predicting trace metals accumulation in the Egyptian Lake Burullus. Science of the Total Environment, 714: 1-13, doi: 10.1016/j.scitotenv.2020.136603.
  • García, M.T. Zamudio, M.A.M., Loaiza, J.M., Morales, A.B., Alfaro, A., Lopez, F., García, J.C. (2019). Characterization and use of southern cattail for biorefining-based production of furfural. Biomass Conversion and Biorefinery, 9: 333–339, doi: 10.1007/s13399-018-0355-1.
  • Gonelimali, F.D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., Hatab, S.R. (2018). Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Frontiers in Microbiology, 9: 1639, doi: 10.3389/fmicb.2018.01639.
  • Goula, A.M., Thymiatis, K., Kaderides, K. (2016). Valorization of grape pomace: Drying behavior and ultrasound extraction of phenolics. Food and Bioproducts Processing, 100: 132-144, doi: 10.1016/j.fbp.2016.06.016.
  • Hasan, M.M., Bashir, T., Bae, H. (2017). Use of Ultrasonication Technology for the Increased Production of Plant Secondary Metabolites. Molecules, 22: 1-10, doi: 10.3390/molecules22071046.
  • Huang, D., Ou, B., Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6): 1841-1856, doi:10.1021/jf030723c.
  • Jain, P.K., Soni, A., Jain, P., Bhawsar, J. (2016). Phytochemical analysis of Mentha spicata plant extract using UV-VIS, FTIR and GC/MS technique. Journal of Chemical and Pharmaceutical Research, 8(2): 1-6.
  • Jerman, T., Trebse, P., Vodopivec, B.M. (2010). Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chemistry, 123: 175-182, doi: 10.1016/j.foodchem.2010.04.006.
  • John, M.O., Rufai, M.A., Sunday, A.J., Fernando, E., Richard, K., Eva, I., Maidala, A., Amos, M., Chana, M., Hannatu, C., Sunday A, O. (2022). Cattail (Typha domingensis) silage improves feed intake, blood profle, economics of production, and growth performance of beef cattle. Tropical Animal Health and Production, 54(48): 1-8, doi: 10.1007/s11250-022-03066-1.
  • Kalaichelvi, K., Dhivya, S.M. (2017). Screening of phytoconstituents, UV-VIS Spectrum and FTIR analysis of Micrococca mercurialis (L.) Benth. International Journal of Herbal Medicine, 5(6): 40-44.
  • Kamtekar, S., Keer, V. Patil, V. (2014). Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. Journal of Applied Pharmaceutical Science, 4(9): 061-065, doi: 10.7324/JAPS.2014.40911.
  • Karbon, M.H., and Alhammer, A.H. (2020). Cytotoxic Effect of Aqueous-Ethanol Extract of Typha Domingensis Pers. (Pollen) against Human Breast Cancer Cells in Vitro. Systematic Reviews in Pharmacy, 11(10): 1158-1161, doi:10.31838/srp.2020.10.167.
  • Karbon, M.H., Raheem Jaafar Azeez, R.J., Hasan, Z.Y.M., Yaseen, A.N. (2019). Phytochemical Properties and Antioxidant activity of Pollen of Typha domingensis pers. Grow in Marshes of Maysan Governorate Southern of Iraq. Journal of Global Pharma Technology, 11(9): 564-570.
  • Kumar, V. and Roy, B.K. (2018). Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis. Scientific Reports, 8:10714, doi: 10.1038/s41598-018-29114-1.
  • Lafarga, T., Roriguez-Rogue, M.J., Bobo, G., Villaro, S., Aguilo-Aguayo, I. (2019). Effect of ultrasound processing on the bioaccessibility of phenolic compounds and antioxidant capacity of selected vegetables. Food Science Biotechnology, 28(6): 1713–1721, doi: 10.1007/s10068-019-00618-4.
  • Linskens, H.F., Jorde, W. (1997). Pollen as Food and Medicine-A Review, Economic Botany 51(1): 78-87.
  • Lohani, U.C., Muthukumarappan, K. (2021). Study of continuous flow ultrasonication to improve total phenolic content and antioxidant activity in sorghum flour and its comparison with batch ultrasonication. Ultrasonics Sonochemistry, 71: 1-10, doi: 10.1016/j.ultsonch.2020.105402.
  • Mukhtar, A.A. and Abdullahi, I.L. (2020). Typha Biomass Energy for Sustainable Management of Typha domingensis L. in Affected Communities of Northern Nigeria. Dutse Journal of Pure and Applied Sciences, 6(4): 246-252.
  • Palacio, S., Aitkenhead, M., Escudero, A., Montserrat-Martí, G., Maestro, M., Robertson, A. J. (2014). Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS One, 9: e107285, doi: 10.1371/journal.pone.0107285.
  • Pandey, R., Jose, S., Sinha, M.K. (2022). Fiber Extraction and Characterization from Typha Domingensis. Journal of Natural Fibers, 19(7): 2648-2659, doi: 10.1080/15440478.2020.1821285.
  • Rafi, M., Jannah, R., Heryanto, R., Kautsar, A., Septaningsih, D.A. (2018). UV-Vis spectroscopy and chemometrics as a tool for identification and discrimination of four Curcuma species. International Food Research Journal, 25(2): 643-648.
  • Rao, M.R.K. and Divya, S.D. (2016). Preliminary Phytochemical Analysis of Typha domingensis Rhizome Aqueous Extracts. International Journal of Pharmaceutical Sciences Review and Research, 37(1): 30-32.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10): 1231-1237, doi: 10.1016/s0891-5849(98)00315-3.
  • Sardar, A.A., Khan, Z.D., Perveen, A., Farid, S., Khan, I.U. (2014). In vitro antioxidant potential and free radical scavenging activity of various extracts of pollen of Typha domingensis Pers. Pakistan Journal of Pharmaceutical Sciences, 27(2): 279-284.
  • Song, X.C., Canellas, E., Asensio, E., Nerin, C. (2020). Predicting the antioxidant capacity and total phenolic content of bearberry leaves by data fusion of UV–Vis spectroscopy and UHPLC/Q-TOF-MS. Talanta, 213: 120831, doi: 10.1016/j.talanta.2020.120831
  • Sorourian, R., Khajehrahimi, A.E., Tadayoni, M., Azizi, M.H., Hojjati, M. (2020). Ultrasound-assisted extraction of polysaccharides from Typha domingensis: Structural characterization and functional properties. International Journal of Biological Macromolecules, 160:758-768, doi: 10.1016/j.ijbiomac.2020.05.226.
  • Tarone, A.G., Silva, E.K., Barros, H.D.F.Q., Gazarin, G.B.B., Junior, M.R.M. (2021). High-intensity ultrasound-assisted recovery of anthocyanins from jabuticaba by-products using green solvents: Effects of ultrasound intensity and solvent composition on the extraction of phenolic compounds. Food Research International, 140: 110048, doi: 10.1016/j.foodres.2020.110048.
  • Wojdyło, A., Oszmiański, J. and Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3): 940–949, doi: 10.1016/j.foodchem.2007.04.038.
  • Zafra-Rojas, Q.Y., González-Martínez, B.E., Cruz-Cansino, N.S., López-Cabanillas, M., Suárez-Jacobo, A., Cervantes-Elizarrarás, A., Ramírez-Moreno, E. (2020). Effect of Ultrasound on In Vitro Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Blackberry (Rubus fruticosus) Residues cv. Tupy. Plant Foods for Human Nutrition, 75: 608–613, doi: 10.1007/s11130-020-00855-7.
  • Zhang, Y., Geel, B.V., Gosling, W.D., Sun, G., Qin, L., Wu, X., (2020). Typha as a wetland food resource: evidence from the Tianluoshan site, Lower Yangtze Region, China. Vegetation History and Archaeobotany, 29: 51–60, doi: 10.1007/s00334-019-00735-4.

TYPHA DOMINGENSIS POLENLERİNDEN BİYOAKTİF BİLEŞİKLERİN EKSTRAKSİYONUNDA GELENEKSEL VE ULTRASONİK YÖNTEMLERİN ARDIŞIK KULLANIMI

Yıl 2023, Cilt: 48 Sayı: 2, 256 - 270, 15.04.2023
https://doi.org/10.15237/gida.GD22129

Öz

Typha domingensis bitkisinin, erkek çiçeklerinden elde edilen polen, yenilebilir özelliktedir. Bu çalışmada, polenden biyoaktif bileşikler, etanol ve metanol kullanılarak geleneksel yöntemle ekstrakte edilmiştir. Ardından, ekstraksiyon verimliliğini artırmak için örneklere ultrasonikasyon uygulanmıştır. Etanol ile ekstraksiyon verimi (%26.3±0.14), metanole (%25.4±0.3) göre daha yüksek bulunmuş ve ultrasonikasyon uygulaması verimi önemli ölçüde artırmıştır (P <0.05). Etanol ve metanol ekstraklarında, toplam fenolik bileşik içerikleri, geleneksel yöntemle sırasıyla 9.83±0.48 ve 9.71±0.55 mg GAE/g, ultrasonikasyon uygulamasından sonra ise 11.76±0.64 ve 12.74±0.37 mg GAE/g kuru madde olarak belirlenmiştir. Etanol ekstraksiyonundaki flavonoid içeriği hem geleneksel hem de ultrasonikasyon yöntemlerinde metanolden önemli ölçüde yüksek olmuştur (P <0.05). Örneklerin antioksidan aktiviteleri DPPH, FRAP, ABTS ve CUPRAC yöntemleriyle belirlenmiş ve sonuçlar ultrasonikasyonun antioksidan kapasitelerini de arttırdığını göstermiştir. Biyoaktif bileşikler, UV-VIS spektroskopisi ve FTIR ile kalitatif olarak analiz edilmiş ve polifenollerin varlığı doğrulanmıştır.

Kaynakça

  • Akkol, E.K., Suntar, I., Keles, H., Yesilada, E. (2011). The potential role of female flowers inflorescence of Typha domingensis Pers. in wound management. Journal of Ethnopharmacology, 133: 1027–1032, doi:10.1016/j.jep.2010.11.036.
  • Al-Bader, S.M. (2018). Characterization and evaluation of fungal growth medium composed pollens powder of cattail (Typha domingensis Pers.). Artículo De Investıgacıón Cıentífıca Y Tecnológıca, 6(1): 1-7, doi: 10.15649/2346075X.480.
  • Alhajali, O., Ali-Nizam, A. (2021). Phytochemical Screening and Antibacterial Activity of Pistacia atlantica and Pinus canariensis Leaf Extracts. Journal of the Turkish Chemical Society, 8(2): 403-418, doi:10.18596/jotcsa.836074.
  • Aljazy, N.A.S., Abdulstar, A.R., Alrakabi, J.M.F. (2021). Analytical Study of Phytochemicals and Antioxidant Activity of Pollen (Typha Domingensis Pers.) Extracted from The Papyrus Plant and Its Use in Cake Enrichment. Al-Qadisiyah Journal For Agriculture Sciences, 11(2): 126-136, doi:10.33794/qjas.2021.132392.1017.
  • Altemimi, A., Choudhary, R., Watson, D.G., Lightfoot, D.A. (2015). Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts. Ultrasonics Sonochemistry, 24: 247–25, doi: 10.1016/j.ultsonch.2014.10.023.
  • Altemimi, A., Watson, D.G., Choudhary, R., Dasari, M.R., Lightfoot, D.A. (2016). Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins. PLoS One, 11(2): 1-20, doi: 10.1371/journal.pone.0148758.
  • Apak, R., Güçlü, K., Ozyürek, M. and Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26): 7970–7981, doi:10.1021/jf048741x.
  • Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektaşoğlu, B., Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7): 1496-1547, doi: 10.3390/12071496.
  • Arenas, P., and Scarpa, G.F. (2003). The Consumption of Typha Doiıngensis Pers. (Typhaceae) Pollen Among The Ethnic Groups of the Gran Chaco, South America. Economic Botany, 57(2): 181-188.
  • Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R., Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4): 96, doi:10.3390/plants8040096.
  • Bansal, S. Lishawa, S.C. Newman S., Tangen, B.A., Wilcox, D., Albert, D. Anteau, M.J., Chimney M.J., Cressey, R.L., DeKeyser, E., Elgersma, K.J., Finkelstein, S.A., Freeland, F., Grosshans, R., Klug, P.E., Larkin, D.J., Lawrence, B.A., Linz, G., Marburger, J., Noe, G., Otto, C., Reo, N., Richards, J., Richardson, C., Rodgers, L., Schrank, A.J., Svedarsky, D., Travis, S., Tuchman, N., Windham-Myers, L. (2019). Typha (Cattail) Invasion in North American Wetlands: Biology, Regional Problems, Impacts, Ecosystem Services, and Management. Wetlands, 39: 645-684, doi: 10.1007/s13157-019-01174-7.
  • Barbero-Barrera, M.M., SalasRuiz, A., GalbisMorales, R. (2021). Mechanical and Physical Characterisation of Typha domingensis Based Thermal Insulation Boards for Developing Areas such as Nigeria. Waste and Biomass Valorization, 12: 5795–5806, doi: 10.1007/s12649-021-01410-4.
  • Batista, N.N., Andrade, D.P., Ramos, C.L., Dias, D.R., Schwani R.F. (2016). Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Research International, 90: 313-319, doi: 10.1016/j.foodres.2016.10.028.
  • Benzie, I.F.F. and Strain, J.J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1): 70–76, doi: 10.1006/abio.1996.0292.
  • Brand-Williams, W., Cuvelier, M.E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1): 25–30, doi: 10.1016/S0023-6438(95)80008-5.
  • Carvalho, J.D.T., and Mariath, J.E.A. (2019). Synflorescence morphology of species of Typha L. (Typhaceae): anatomical and ontogenetic bases for taxonomic applications. Acta Botanica Brasilica, 33(4): 672-682, doi: 10.1590/0102-33062019abb0140.
  • Chai, T.T., Mohan, M., Ong, H.C., Wong, F.C. (2014). Antioxidant, Iron chelating and Anti-glucosidase Activities of Typha domingensis Pers (Typhaceae). Tropical Journal of Pharmaceutical Research January, 13 (1): 67-72, doi: 10.4314/tjpr.v13i1.10.
  • Collazos-Escobar, G. A., Gutierrez-Guzman, N., Vaquiro-Herrera, H. A., Amorocho-Cruz, C. M. (2020). Moisture dynamic sorption isotherms and thermodynamic properties of parchment specialty coffee (Coffea arabica L.). Coffee Science, 15:e151684, doi: 10.25186/.v15i.1684.
  • Corbin, C., Fidel, T., Leclerc, E.A., Barakzoy, E., Sagot, N., Falguiéres, A., Renouard, S., Blondeau, J.P., Ferroud, C., Doussot, J., Lainé, E., Hano, C. (2015). Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrasonics Sonochemistry, 26: 176-185, doi: 10.1016/j.ultsonch.2015.02.008.
  • Corneanu, M., Corneanu, C.G., Constantin, C. Tripon, S.(2014). Phytoremediation of Some Heavy Metals and Radionuclides from a Polluted Area Located on The Middle Jiu River. Case Study: Typha Latıfolıa L. Oltenia. Studii şi comunicări. Ştiinţele Naturii. 30(2): 208-221.
  • Cruz, Y.C., Scarpa, A.L.M., Pereira, M.P., Castro, E.M., Pereira, F.J. (2019). Growth of Typha domingensis as related to leaf physiological and anatomical modifications under drought conditions. Acta Physiologiae Plantarum, 41(64): 1-9, doi: 10.1007/s11738-019-2858-1.
  • Dilshad, R., Khan, K.R., Saeed, L., Sherif, A.E., Ahmad, S., Ovatlarnporn, C., Nasim, J., Hussain, M., Ghalloo, B.A., Basit, A., Mukhtar, I. (2022). Chemical Composition and Biological Evaluation of Typha domingensis Pers. to Ameliorate Health Pathologies: In Vitro and In Silico Approaches. BioMed Research International, 8010395, doi: 10.1155/2022/8010395.
  • Egdhami, A., Sadeghi, F. (2010). Determination of total phenolic and flavonoids contents in methanolic and aqueous extract of Achillea millefolium. Organic Chemistry Journals, 2:81-84.
  • Eid, E.M., Galal, T.M., Shaltout, K.H., El-Sheikh, M.A., Asaeda, T., Alatar, A.A., Alfarhan, A.H., Alharthi, A., Alshehri, A.M.A., Picó, Y., Barcelo, D. (2020). Biomonitoring potential of the native aquatic plant Typha domingensis by predicting trace metals accumulation in the Egyptian Lake Burullus. Science of the Total Environment, 714: 1-13, doi: 10.1016/j.scitotenv.2020.136603.
  • García, M.T. Zamudio, M.A.M., Loaiza, J.M., Morales, A.B., Alfaro, A., Lopez, F., García, J.C. (2019). Characterization and use of southern cattail for biorefining-based production of furfural. Biomass Conversion and Biorefinery, 9: 333–339, doi: 10.1007/s13399-018-0355-1.
  • Gonelimali, F.D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., Hatab, S.R. (2018). Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Frontiers in Microbiology, 9: 1639, doi: 10.3389/fmicb.2018.01639.
  • Goula, A.M., Thymiatis, K., Kaderides, K. (2016). Valorization of grape pomace: Drying behavior and ultrasound extraction of phenolics. Food and Bioproducts Processing, 100: 132-144, doi: 10.1016/j.fbp.2016.06.016.
  • Hasan, M.M., Bashir, T., Bae, H. (2017). Use of Ultrasonication Technology for the Increased Production of Plant Secondary Metabolites. Molecules, 22: 1-10, doi: 10.3390/molecules22071046.
  • Huang, D., Ou, B., Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6): 1841-1856, doi:10.1021/jf030723c.
  • Jain, P.K., Soni, A., Jain, P., Bhawsar, J. (2016). Phytochemical analysis of Mentha spicata plant extract using UV-VIS, FTIR and GC/MS technique. Journal of Chemical and Pharmaceutical Research, 8(2): 1-6.
  • Jerman, T., Trebse, P., Vodopivec, B.M. (2010). Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chemistry, 123: 175-182, doi: 10.1016/j.foodchem.2010.04.006.
  • John, M.O., Rufai, M.A., Sunday, A.J., Fernando, E., Richard, K., Eva, I., Maidala, A., Amos, M., Chana, M., Hannatu, C., Sunday A, O. (2022). Cattail (Typha domingensis) silage improves feed intake, blood profle, economics of production, and growth performance of beef cattle. Tropical Animal Health and Production, 54(48): 1-8, doi: 10.1007/s11250-022-03066-1.
  • Kalaichelvi, K., Dhivya, S.M. (2017). Screening of phytoconstituents, UV-VIS Spectrum and FTIR analysis of Micrococca mercurialis (L.) Benth. International Journal of Herbal Medicine, 5(6): 40-44.
  • Kamtekar, S., Keer, V. Patil, V. (2014). Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. Journal of Applied Pharmaceutical Science, 4(9): 061-065, doi: 10.7324/JAPS.2014.40911.
  • Karbon, M.H., and Alhammer, A.H. (2020). Cytotoxic Effect of Aqueous-Ethanol Extract of Typha Domingensis Pers. (Pollen) against Human Breast Cancer Cells in Vitro. Systematic Reviews in Pharmacy, 11(10): 1158-1161, doi:10.31838/srp.2020.10.167.
  • Karbon, M.H., Raheem Jaafar Azeez, R.J., Hasan, Z.Y.M., Yaseen, A.N. (2019). Phytochemical Properties and Antioxidant activity of Pollen of Typha domingensis pers. Grow in Marshes of Maysan Governorate Southern of Iraq. Journal of Global Pharma Technology, 11(9): 564-570.
  • Kumar, V. and Roy, B.K. (2018). Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis. Scientific Reports, 8:10714, doi: 10.1038/s41598-018-29114-1.
  • Lafarga, T., Roriguez-Rogue, M.J., Bobo, G., Villaro, S., Aguilo-Aguayo, I. (2019). Effect of ultrasound processing on the bioaccessibility of phenolic compounds and antioxidant capacity of selected vegetables. Food Science Biotechnology, 28(6): 1713–1721, doi: 10.1007/s10068-019-00618-4.
  • Linskens, H.F., Jorde, W. (1997). Pollen as Food and Medicine-A Review, Economic Botany 51(1): 78-87.
  • Lohani, U.C., Muthukumarappan, K. (2021). Study of continuous flow ultrasonication to improve total phenolic content and antioxidant activity in sorghum flour and its comparison with batch ultrasonication. Ultrasonics Sonochemistry, 71: 1-10, doi: 10.1016/j.ultsonch.2020.105402.
  • Mukhtar, A.A. and Abdullahi, I.L. (2020). Typha Biomass Energy for Sustainable Management of Typha domingensis L. in Affected Communities of Northern Nigeria. Dutse Journal of Pure and Applied Sciences, 6(4): 246-252.
  • Palacio, S., Aitkenhead, M., Escudero, A., Montserrat-Martí, G., Maestro, M., Robertson, A. J. (2014). Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS One, 9: e107285, doi: 10.1371/journal.pone.0107285.
  • Pandey, R., Jose, S., Sinha, M.K. (2022). Fiber Extraction and Characterization from Typha Domingensis. Journal of Natural Fibers, 19(7): 2648-2659, doi: 10.1080/15440478.2020.1821285.
  • Rafi, M., Jannah, R., Heryanto, R., Kautsar, A., Septaningsih, D.A. (2018). UV-Vis spectroscopy and chemometrics as a tool for identification and discrimination of four Curcuma species. International Food Research Journal, 25(2): 643-648.
  • Rao, M.R.K. and Divya, S.D. (2016). Preliminary Phytochemical Analysis of Typha domingensis Rhizome Aqueous Extracts. International Journal of Pharmaceutical Sciences Review and Research, 37(1): 30-32.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10): 1231-1237, doi: 10.1016/s0891-5849(98)00315-3.
  • Sardar, A.A., Khan, Z.D., Perveen, A., Farid, S., Khan, I.U. (2014). In vitro antioxidant potential and free radical scavenging activity of various extracts of pollen of Typha domingensis Pers. Pakistan Journal of Pharmaceutical Sciences, 27(2): 279-284.
  • Song, X.C., Canellas, E., Asensio, E., Nerin, C. (2020). Predicting the antioxidant capacity and total phenolic content of bearberry leaves by data fusion of UV–Vis spectroscopy and UHPLC/Q-TOF-MS. Talanta, 213: 120831, doi: 10.1016/j.talanta.2020.120831
  • Sorourian, R., Khajehrahimi, A.E., Tadayoni, M., Azizi, M.H., Hojjati, M. (2020). Ultrasound-assisted extraction of polysaccharides from Typha domingensis: Structural characterization and functional properties. International Journal of Biological Macromolecules, 160:758-768, doi: 10.1016/j.ijbiomac.2020.05.226.
  • Tarone, A.G., Silva, E.K., Barros, H.D.F.Q., Gazarin, G.B.B., Junior, M.R.M. (2021). High-intensity ultrasound-assisted recovery of anthocyanins from jabuticaba by-products using green solvents: Effects of ultrasound intensity and solvent composition on the extraction of phenolic compounds. Food Research International, 140: 110048, doi: 10.1016/j.foodres.2020.110048.
  • Wojdyło, A., Oszmiański, J. and Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3): 940–949, doi: 10.1016/j.foodchem.2007.04.038.
  • Zafra-Rojas, Q.Y., González-Martínez, B.E., Cruz-Cansino, N.S., López-Cabanillas, M., Suárez-Jacobo, A., Cervantes-Elizarrarás, A., Ramírez-Moreno, E. (2020). Effect of Ultrasound on In Vitro Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Blackberry (Rubus fruticosus) Residues cv. Tupy. Plant Foods for Human Nutrition, 75: 608–613, doi: 10.1007/s11130-020-00855-7.
  • Zhang, Y., Geel, B.V., Gosling, W.D., Sun, G., Qin, L., Wu, X., (2020). Typha as a wetland food resource: evidence from the Tianluoshan site, Lower Yangtze Region, China. Vegetation History and Archaeobotany, 29: 51–60, doi: 10.1007/s00334-019-00735-4.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Ayşe Avcı 0000-0001-7102-397X

İnci Cerit 0000-0002-3106-8951

Mohammed Hamk 0000-0003-0748-1743

Semra Yılmazer Keskin 0000-0002-9467-3171

Yayımlanma Tarihi 15 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 48 Sayı: 2

Kaynak Göster

APA Avcı, A., Cerit, İ., Hamk, M., Yılmazer Keskin, S. (2023). IMPROVED EXTRACTION OF BIOACTIVE COMPOUNDS FROM THE POLLENS OF TYPHA DOMINGENSIS WITH SEQUENTIAL CONVENTIONAL AND ULTRASOUND TREATMENT. Gıda, 48(2), 256-270. https://doi.org/10.15237/gida.GD22129
AMA Avcı A, Cerit İ, Hamk M, Yılmazer Keskin S. IMPROVED EXTRACTION OF BIOACTIVE COMPOUNDS FROM THE POLLENS OF TYPHA DOMINGENSIS WITH SEQUENTIAL CONVENTIONAL AND ULTRASOUND TREATMENT. GIDA. Nisan 2023;48(2):256-270. doi:10.15237/gida.GD22129
Chicago Avcı, Ayşe, İnci Cerit, Mohammed Hamk, ve Semra Yılmazer Keskin. “IMPROVED EXTRACTION OF BIOACTIVE COMPOUNDS FROM THE POLLENS OF TYPHA DOMINGENSIS WITH SEQUENTIAL CONVENTIONAL AND ULTRASOUND TREATMENT”. Gıda 48, sy. 2 (Nisan 2023): 256-70. https://doi.org/10.15237/gida.GD22129.
EndNote Avcı A, Cerit İ, Hamk M, Yılmazer Keskin S (01 Nisan 2023) IMPROVED EXTRACTION OF BIOACTIVE COMPOUNDS FROM THE POLLENS OF TYPHA DOMINGENSIS WITH SEQUENTIAL CONVENTIONAL AND ULTRASOUND TREATMENT. Gıda 48 2 256–270.
IEEE A. Avcı, İ. Cerit, M. Hamk, ve S. Yılmazer Keskin, “IMPROVED EXTRACTION OF BIOACTIVE COMPOUNDS FROM THE POLLENS OF TYPHA DOMINGENSIS WITH SEQUENTIAL CONVENTIONAL AND ULTRASOUND TREATMENT”, GIDA, c. 48, sy. 2, ss. 256–270, 2023, doi: 10.15237/gida.GD22129.
ISNAD Avcı, Ayşe vd. “IMPROVED EXTRACTION OF BIOACTIVE COMPOUNDS FROM THE POLLENS OF TYPHA DOMINGENSIS WITH SEQUENTIAL CONVENTIONAL AND ULTRASOUND TREATMENT”. Gıda 48/2 (Nisan 2023), 256-270. https://doi.org/10.15237/gida.GD22129.
JAMA Avcı A, Cerit İ, Hamk M, Yılmazer Keskin S. IMPROVED EXTRACTION OF BIOACTIVE COMPOUNDS FROM THE POLLENS OF TYPHA DOMINGENSIS WITH SEQUENTIAL CONVENTIONAL AND ULTRASOUND TREATMENT. GIDA. 2023;48:256–270.
MLA Avcı, Ayşe vd. “IMPROVED EXTRACTION OF BIOACTIVE COMPOUNDS FROM THE POLLENS OF TYPHA DOMINGENSIS WITH SEQUENTIAL CONVENTIONAL AND ULTRASOUND TREATMENT”. Gıda, c. 48, sy. 2, 2023, ss. 256-70, doi:10.15237/gida.GD22129.
Vancouver Avcı A, Cerit İ, Hamk M, Yılmazer Keskin S. IMPROVED EXTRACTION OF BIOACTIVE COMPOUNDS FROM THE POLLENS OF TYPHA DOMINGENSIS WITH SEQUENTIAL CONVENTIONAL AND ULTRASOUND TREATMENT. GIDA. 2023;48(2):256-70.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/