Araştırma Makalesi
BibTex RIS Kaynak Göster

CHLORELLA VULGARIS İÇEREN AZ YAĞLI KURABİYELER: HAMUR REOLOJİSİ, FİZİKSEL, DOKUSAL VE DUYUSAL ÖZELLİKLER ÜZERİNE ETKİLERİ

Yıl 2023, Cilt: 48 Sayı: 3, 526 - 544, 16.06.2023
https://doi.org/10.15237/gida.GD22076

Öz

Mikroalgler, umut verici bir protein kaynağını temsil eden gıdalarda zenginleştirme için kullanılan muazzam bir biyokütledir. Fırınlanmış gıdaların mikroalglerle zenginleştirilmesi, dokusal ve yapısal etkileri nedeniyle zorlu bir iştir. Bu çalışmada, çeşitli konsantrasyonlarda (%0.5, 1.5 ve 3.0) Chlorella vulgaris içeren az yağlı kurabiyelerin hamur reolojisi, fiziksel, dokusal ve duyusal özellikleri değerlendirilmiştir. Kurabiyelerin kuru madde (%93,20 ila 94,89), protein (%5,55 ila 7,08), kül (%0,47 ila 0,55) ve yağ (%12,35 ila 13,37) içerikleri artan mikroalg konsantrasyonu ile önemli ölçüde artarken, karbonhidrat miktarı önemli ölçüde değişmemiştir. Sürünme parametreleri, toparlanma davranışı ve viskoelastisite, sonuçların daha sert hamur yapısını açıkça gösterdiği Chlorella biyokütlesinin eklenmesiyle artmıştır. Mikroalg konsantrasyonu arttıkça, yüksek sertlik (198.69 ila 330.86, N) ve kırılabilirlik (88.66 ila 165.18, N) özellikleri ile önemli bir renk değişimi (33.25, ΔE) gözlenmiştir.

Kaynakça

  • Abboud, A., Rubenthaler, G., & Hoseney, R. C. (1985). Effect of fat and sugar in sugar-snap cookies and evaluation of tests to measure cookie flour quality. Cereal Chemistry, 62(2), 124-129.
  • Achour, H. (2014). Evaluation of nutritional and sensory properties of bread enriched with Spirulina.
  • Anonymous. (2021). https://texturetechnologies.com/resources/texture-profile-analysis. Retrieved from https://texturetechnologies.com/resources/texture-profile-analysis
  • Bashir, S., Yaseen, M., Sharma, V., Purohit, S. R., Barak, S., & Mudgil, D. (2020). Rheological and textural properties of gluten free cookies based on pearl millet and flaxseed. Biointerface Res. Appl. Chem, 10, 6565-6576.
  • Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., . . . Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26, 161-171. doi:https://doi.org/10.1016/j.algal.2017.07.017
  • Colla, K., Costanzo, A., & Gamlath, S. (2018). Fat replacers in baked food products. Foods, 7(12), 192.
  • Cserhalmi, Z., Sass-Kiss, Á., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7(1), 49-54. doi:https://doi.org/10.1016/j.ifset.2005.07.001
  • DeMan, L. (1994). Functionality of palm oil, palm oil products and palm kernel oil in margarine and shortening: Kuala Lumpur: Institut Penyelidikan Minyak Kelapa Sawit Malaysia, 1994.
  • Dimitreli, G., & Thomareis, A. S. (2008). Effect of chemical composition on the linear viscoelastic properties of spreadable-type processed cheese. Journal of Food Engineering, 84(3), 368-374. doi:https://doi.org/10.1016/j.jfoodeng.2007.05.030
  • Dinç, S., Javidipour, I., Özbas, Ö. Ö., & Tekin, A. (2014). Utilization of zero-trans non-interesterified and interesterified shortenings in cookie production. Journal of Food Science and Technology, 51(2), 365-370. doi:10.1007/s13197-011-0506-x
  • Dolz, M., Hernandez, M. J., & Delegido, J. (2008). Creep and recovery experimental investigation of low oil content food emulsions. Food Hydrocolloids, 22(3), 421-427. doi:10.1016/j.foodhyd.2006.12.011
  • Dubey, R. P., & Kumari, P. (2011). Preparation of low fat and high protein frozen yoghurt enriched with papaya pulp and Spirulina.
  • Egea, B., Campos, A., De Carvalho-Eliane, J., & Danesi, D. (2014). Antioxidant and nutritional potential of cookies enriched with Spirulina platensis and sources of fibre. J Food Nutr Res, 53(2), 171-179.
  • Everitt, M. (2009). CHAPTER 8 - Consumer-Targeted Sensory Quality. In G. Barbosa-Cánovas, A. Mortimer, D. Lineback, W. Spiess, K. Buckle, & P. Colonna (Eds.), Global Issues in Food Science and Technology (pp. 117-128). San Diego: Academic Press.
  • Figueira, F. d. S., Crizel, T. d. M., Silva, C. R., & Salas-Mellado, M. d. l. M. (2011). Elaboration of gluten-free bread enriched with the microalgae Spirulina platensis. Brazilian Journal of Food Technology, 14(4), 308-316.
  • Fradinho, P., Nunes, M. C., & Raymundo, A. (2015). Developing consumer acceptable biscuits enriched with Psyllium fibre. Journal of Food Science and Technology, 52(8), 4830-4840.
  • Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M., & Raymundo, A. (2013). Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. Lwt-Food Science and Technology, 50(1), 312-319.
  • Gouveia, L., Batista, A. P., Miranda, A., Empis, J., & Raymundo, A. (2007). Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science & Emerging Technologies, 8(3), 433-436. doi:https://doi.org/10.1016/j.ifset.2007.03.026
  • Gouveia, L., Coutinho, C., Mendonça, E., Batista, A. P., Sousa, I., Bandarra, N. M., & Raymundo, A. (2008). Functional biscuits with PUFA-ω3 from Isochrysis galbana. Journal of the Science of Food and Agriculture, 88(5), 891-896. doi:https://doi.org/10.1002/jsfa.3166
  • Graça, C., Fradinho, P., Sousa, I., & Raymundo, A. (2018). Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT, 89, 466-474. doi:https://doi.org/10.1016/j.lwt.2017.11.024
  • Gujral, H. S., Park, S. J., & Baik, B.-K. (2008). Effects of Added Minerals on Pasting of Partial Waxy Wheat Flour and Starch and on Noodle Making Properties. Cereal Chemistry, 85(2), 97-101. doi:https://doi.org/10.1094/CCHEM-85-2-0097
  • Huang, M.-s., Zhang, M., & Bhandari, B. (2019). Assessing the 3D Printing Precision and Texture Properties of Brown Rice Induced by Infill Levels and Printing Variables. Food and Bioprocess Technology, 12(7), 1185-1196. doi:10.1007/s11947-019-02287-x
  • Huang, M.-s., Zhang, M., Bhandari, B., & Liu, Y. (2020). Improving the three-dimensional printability of taro paste by the addition of additives. Journal of Food Process Engineering, 43(5), e13090. doi:https://doi.org/10.1111/jfpe.13090
  • Isanga, J., & Zhang, G. (2009). Production and evaluation of some physicochemical parameters of peanut milk yoghurt. LWT - Food Science and Technology, 42(6), 1132-1138. doi:https://doi.org/10.1016/j.lwt.2009.01.014
  • Kurt, A., Cengiz, A., & Kahyaoglu, T. (2016). The effect of gum tragacanth on the rheological properties of salep based ice cream mix. Carbohydrate Polymers. doi:http://dx.doi.org/10.1016/j.carbpol.2016.02.018
  • Laguna, L., Varela, P., Salvador, A., Sanz, T., & Fiszman, S. M. (2012). Balancing Texture and Other Sensory Features in Reduced Fat Short-Dough Biscuits. Journal of Texture Studies, 43(3), 235-245. doi:https://doi.org/10.1111/j.1745-4603.2011.00333.x
  • Peressini, D., & Sensidoni, A. (2009). Effect of soluble dietary fibre addition on rheological and breadmaking properties of wheat doughs. Journal of Cereal Science, 49(2), 190-201. doi:https://doi.org/10.1016/j.jcs.2008.09.007
  • Pulatsu, E., Su, J.-W., Kenderes, S. M., Lin, J., Vardhanabhuti, B., & Lin, M. (2021). Effects of ingredients and pre-heating on the printing quality and dimensional stability in 3D printing of cookie dough. Journal of Food Engineering, 294, 110412. doi:https://doi.org/10.1016/j.jfoodeng.2020.110412
  • Rangrej, V., Shah, V., Patel, J., & Ganorkar, P. M. (2015). Effect of shortening replacement with flaxseed oil on physical, sensory, fatty acid and storage characteristics of cookies. Journal of Food Science and Technology, 52(6), 3694-3700. doi:10.1007/s13197-014-1430-7
  • Rao, M. A., & Cooley, H. J. (1992). Rheological behavior of tomato pastes in steady and dynamic shear. Journal of Texture Studies, 23(4), 415-425. doi:10.1111/j.1745-4603.1992.tb00031.x
  • Rosell, C. M., Rojas, J. A., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15(1), 75-81. doi:https://doi.org/10.1016/S0268-005X(00)00054-0
  • Sahni, P., Sharma, S., & Singh, B. (2019). Evaluation and quality assessment of defatted microalgae meal of Chlorella as an alternative food ingredient in cookies. Nutrition & Food Science, 49(2), 221-231. doi:10.1108/nfs-06-2018-0171
  • Šaponjac, V. T., Ćetković, G., Čanadanović-Brunet, J., Pajin, B., Djilas, S., Petrović, J., . . . Vulić, J. (2016). Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chemistry, 207, 27-33.
  • Saricaoglu, F. T., Cinar, A., Demircan, H., & Oral, R. A. (2019). Rheological and microstructural characterization of royal jelly at different temperatures. Journal of Food Process Engineering, 42(8), e13285. doi:10.1111/jfpe.13285
  • Sozer, N. (2009). Rheological properties of rice pasta dough supplemented with proteins and gums. Food Hydrocolloids, 23(3), 849-855. doi:10.1016/j.foodhyd.2008.03.016
  • Steffe, J., F. (1996). Rheological Methods in Food Process Engineering (Second edition ed.). Michigan, ABD: Freeman Press.
  • Şahin, O. I. (2020). Functional and sensorial properties of cookies enriched with SPIRULINA and DUNALIELLA biomass. Journal of Food Science and Technology, 57, 3639-3646.
  • Uribe-Wandurraga, Z. N., Igual, M., Reino-Moyón, J., García-Segovia, P., & Martínez-Monzó, J. (2020). Effect of Microalgae (Arthrospira platensis and Chlorella vulgaris) Addition on 3D Printed Cookies. Food Biophysics, 16(1), 27-39. doi:10.1007/s11483-020-09642-y
  • Vieira, M. V., Oliveira, S. M., Amado, I. R., Fasolin, L. H., Vicente, A. A., Pastrana, L. M., & Fuciños, P. (2020). 3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization. Food Hydrocolloids, 107, 105893. doi:https://doi.org/10.1016/j.foodhyd.2020.105893
  • Yang, Y., Guan, E., Zhang, T., Li, M., & Bian, K. (2019). Influence of water addition methods on water mobility characterization and rheological properties of wheat flour dough. Journal of Cereal Science, 89, 102791. doi:https://doi.org/10.1016/j.jcs.2019.102791
  • Zhukova, N. V., & Aizdaicher, N. A. (1995). Fatty acid composition of 15 species of marine microalgae. Phytochemistry, 39(2), 351-356. doi:https://doi.org/10.1016/0031-9422(94)00913-E
  • Zouari, N., Abid, M., Fakhfakh, N., Ayadi, M., Zorgui, L., Ayadi, M., & Attia, H. (2011). Blue-green algae (Arthrospira platensis) as an ingredient in pasta: free radical scavenging activity, sensory and cooking characteristics evaluation. International Journal of Food Sciences and Nutrition, 62(8), 811-813.
  • Zoulias, E. I., Oreopoulou, V., & Kounalaki, E. (2002). Effect of fat and sugar replacement on cookie properties. Journal of the Science of Food and Agriculture, 82(14), 1637-1644. doi:https://doi.org/10.1002/jsfa.1230

LOW-FAT COOKIES WITH CHLORELLA VULGARIS: EFFECTS ON DOUGH RHEOLOGY, PHYSICAL, TEXTURAL AND SENSORY PROPERTIES OF COOKIES

Yıl 2023, Cilt: 48 Sayı: 3, 526 - 544, 16.06.2023
https://doi.org/10.15237/gida.GD22076

Öz

Microalgae are an enormous biomass used for fortification in foods that represent a promising source of protein. Enrichment of baked foods with microalgae is a challenge for its textural and structural impacts. In this study, dough rheology, physical, textural and sensorial properties of low-fat cookies with Chlorella vulgaris at various concentration (0.5, 1.5 and 3.0 %) were evaluated. Dry matter (93.20 to 94.89, %), protein (5.55 to 7.08, %), ash (0.47 to 0.55, %) and fat (12.35 to 13.37, %) contents of cookies were significantly increased with increasing microalgae concentration, whereas carbohydrate amount did not change significantly. The creep parameters, recovery behavior and viscoelasticity were increased with the addition of Chlorella biomass where results clearly showed more stiff dough structure. As the microalgae concentration increased, a significant color change (33.25, ΔE) with high hardness (198.69 up to 330.86, N) and fracturability (88.66 up to 165.18, N) properties were observed.

Kaynakça

  • Abboud, A., Rubenthaler, G., & Hoseney, R. C. (1985). Effect of fat and sugar in sugar-snap cookies and evaluation of tests to measure cookie flour quality. Cereal Chemistry, 62(2), 124-129.
  • Achour, H. (2014). Evaluation of nutritional and sensory properties of bread enriched with Spirulina.
  • Anonymous. (2021). https://texturetechnologies.com/resources/texture-profile-analysis. Retrieved from https://texturetechnologies.com/resources/texture-profile-analysis
  • Bashir, S., Yaseen, M., Sharma, V., Purohit, S. R., Barak, S., & Mudgil, D. (2020). Rheological and textural properties of gluten free cookies based on pearl millet and flaxseed. Biointerface Res. Appl. Chem, 10, 6565-6576.
  • Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., . . . Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26, 161-171. doi:https://doi.org/10.1016/j.algal.2017.07.017
  • Colla, K., Costanzo, A., & Gamlath, S. (2018). Fat replacers in baked food products. Foods, 7(12), 192.
  • Cserhalmi, Z., Sass-Kiss, Á., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7(1), 49-54. doi:https://doi.org/10.1016/j.ifset.2005.07.001
  • DeMan, L. (1994). Functionality of palm oil, palm oil products and palm kernel oil in margarine and shortening: Kuala Lumpur: Institut Penyelidikan Minyak Kelapa Sawit Malaysia, 1994.
  • Dimitreli, G., & Thomareis, A. S. (2008). Effect of chemical composition on the linear viscoelastic properties of spreadable-type processed cheese. Journal of Food Engineering, 84(3), 368-374. doi:https://doi.org/10.1016/j.jfoodeng.2007.05.030
  • Dinç, S., Javidipour, I., Özbas, Ö. Ö., & Tekin, A. (2014). Utilization of zero-trans non-interesterified and interesterified shortenings in cookie production. Journal of Food Science and Technology, 51(2), 365-370. doi:10.1007/s13197-011-0506-x
  • Dolz, M., Hernandez, M. J., & Delegido, J. (2008). Creep and recovery experimental investigation of low oil content food emulsions. Food Hydrocolloids, 22(3), 421-427. doi:10.1016/j.foodhyd.2006.12.011
  • Dubey, R. P., & Kumari, P. (2011). Preparation of low fat and high protein frozen yoghurt enriched with papaya pulp and Spirulina.
  • Egea, B., Campos, A., De Carvalho-Eliane, J., & Danesi, D. (2014). Antioxidant and nutritional potential of cookies enriched with Spirulina platensis and sources of fibre. J Food Nutr Res, 53(2), 171-179.
  • Everitt, M. (2009). CHAPTER 8 - Consumer-Targeted Sensory Quality. In G. Barbosa-Cánovas, A. Mortimer, D. Lineback, W. Spiess, K. Buckle, & P. Colonna (Eds.), Global Issues in Food Science and Technology (pp. 117-128). San Diego: Academic Press.
  • Figueira, F. d. S., Crizel, T. d. M., Silva, C. R., & Salas-Mellado, M. d. l. M. (2011). Elaboration of gluten-free bread enriched with the microalgae Spirulina platensis. Brazilian Journal of Food Technology, 14(4), 308-316.
  • Fradinho, P., Nunes, M. C., & Raymundo, A. (2015). Developing consumer acceptable biscuits enriched with Psyllium fibre. Journal of Food Science and Technology, 52(8), 4830-4840.
  • Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M., & Raymundo, A. (2013). Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. Lwt-Food Science and Technology, 50(1), 312-319.
  • Gouveia, L., Batista, A. P., Miranda, A., Empis, J., & Raymundo, A. (2007). Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science & Emerging Technologies, 8(3), 433-436. doi:https://doi.org/10.1016/j.ifset.2007.03.026
  • Gouveia, L., Coutinho, C., Mendonça, E., Batista, A. P., Sousa, I., Bandarra, N. M., & Raymundo, A. (2008). Functional biscuits with PUFA-ω3 from Isochrysis galbana. Journal of the Science of Food and Agriculture, 88(5), 891-896. doi:https://doi.org/10.1002/jsfa.3166
  • Graça, C., Fradinho, P., Sousa, I., & Raymundo, A. (2018). Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT, 89, 466-474. doi:https://doi.org/10.1016/j.lwt.2017.11.024
  • Gujral, H. S., Park, S. J., & Baik, B.-K. (2008). Effects of Added Minerals on Pasting of Partial Waxy Wheat Flour and Starch and on Noodle Making Properties. Cereal Chemistry, 85(2), 97-101. doi:https://doi.org/10.1094/CCHEM-85-2-0097
  • Huang, M.-s., Zhang, M., & Bhandari, B. (2019). Assessing the 3D Printing Precision and Texture Properties of Brown Rice Induced by Infill Levels and Printing Variables. Food and Bioprocess Technology, 12(7), 1185-1196. doi:10.1007/s11947-019-02287-x
  • Huang, M.-s., Zhang, M., Bhandari, B., & Liu, Y. (2020). Improving the three-dimensional printability of taro paste by the addition of additives. Journal of Food Process Engineering, 43(5), e13090. doi:https://doi.org/10.1111/jfpe.13090
  • Isanga, J., & Zhang, G. (2009). Production and evaluation of some physicochemical parameters of peanut milk yoghurt. LWT - Food Science and Technology, 42(6), 1132-1138. doi:https://doi.org/10.1016/j.lwt.2009.01.014
  • Kurt, A., Cengiz, A., & Kahyaoglu, T. (2016). The effect of gum tragacanth on the rheological properties of salep based ice cream mix. Carbohydrate Polymers. doi:http://dx.doi.org/10.1016/j.carbpol.2016.02.018
  • Laguna, L., Varela, P., Salvador, A., Sanz, T., & Fiszman, S. M. (2012). Balancing Texture and Other Sensory Features in Reduced Fat Short-Dough Biscuits. Journal of Texture Studies, 43(3), 235-245. doi:https://doi.org/10.1111/j.1745-4603.2011.00333.x
  • Peressini, D., & Sensidoni, A. (2009). Effect of soluble dietary fibre addition on rheological and breadmaking properties of wheat doughs. Journal of Cereal Science, 49(2), 190-201. doi:https://doi.org/10.1016/j.jcs.2008.09.007
  • Pulatsu, E., Su, J.-W., Kenderes, S. M., Lin, J., Vardhanabhuti, B., & Lin, M. (2021). Effects of ingredients and pre-heating on the printing quality and dimensional stability in 3D printing of cookie dough. Journal of Food Engineering, 294, 110412. doi:https://doi.org/10.1016/j.jfoodeng.2020.110412
  • Rangrej, V., Shah, V., Patel, J., & Ganorkar, P. M. (2015). Effect of shortening replacement with flaxseed oil on physical, sensory, fatty acid and storage characteristics of cookies. Journal of Food Science and Technology, 52(6), 3694-3700. doi:10.1007/s13197-014-1430-7
  • Rao, M. A., & Cooley, H. J. (1992). Rheological behavior of tomato pastes in steady and dynamic shear. Journal of Texture Studies, 23(4), 415-425. doi:10.1111/j.1745-4603.1992.tb00031.x
  • Rosell, C. M., Rojas, J. A., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15(1), 75-81. doi:https://doi.org/10.1016/S0268-005X(00)00054-0
  • Sahni, P., Sharma, S., & Singh, B. (2019). Evaluation and quality assessment of defatted microalgae meal of Chlorella as an alternative food ingredient in cookies. Nutrition & Food Science, 49(2), 221-231. doi:10.1108/nfs-06-2018-0171
  • Šaponjac, V. T., Ćetković, G., Čanadanović-Brunet, J., Pajin, B., Djilas, S., Petrović, J., . . . Vulić, J. (2016). Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chemistry, 207, 27-33.
  • Saricaoglu, F. T., Cinar, A., Demircan, H., & Oral, R. A. (2019). Rheological and microstructural characterization of royal jelly at different temperatures. Journal of Food Process Engineering, 42(8), e13285. doi:10.1111/jfpe.13285
  • Sozer, N. (2009). Rheological properties of rice pasta dough supplemented with proteins and gums. Food Hydrocolloids, 23(3), 849-855. doi:10.1016/j.foodhyd.2008.03.016
  • Steffe, J., F. (1996). Rheological Methods in Food Process Engineering (Second edition ed.). Michigan, ABD: Freeman Press.
  • Şahin, O. I. (2020). Functional and sensorial properties of cookies enriched with SPIRULINA and DUNALIELLA biomass. Journal of Food Science and Technology, 57, 3639-3646.
  • Uribe-Wandurraga, Z. N., Igual, M., Reino-Moyón, J., García-Segovia, P., & Martínez-Monzó, J. (2020). Effect of Microalgae (Arthrospira platensis and Chlorella vulgaris) Addition on 3D Printed Cookies. Food Biophysics, 16(1), 27-39. doi:10.1007/s11483-020-09642-y
  • Vieira, M. V., Oliveira, S. M., Amado, I. R., Fasolin, L. H., Vicente, A. A., Pastrana, L. M., & Fuciños, P. (2020). 3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization. Food Hydrocolloids, 107, 105893. doi:https://doi.org/10.1016/j.foodhyd.2020.105893
  • Yang, Y., Guan, E., Zhang, T., Li, M., & Bian, K. (2019). Influence of water addition methods on water mobility characterization and rheological properties of wheat flour dough. Journal of Cereal Science, 89, 102791. doi:https://doi.org/10.1016/j.jcs.2019.102791
  • Zhukova, N. V., & Aizdaicher, N. A. (1995). Fatty acid composition of 15 species of marine microalgae. Phytochemistry, 39(2), 351-356. doi:https://doi.org/10.1016/0031-9422(94)00913-E
  • Zouari, N., Abid, M., Fakhfakh, N., Ayadi, M., Zorgui, L., Ayadi, M., & Attia, H. (2011). Blue-green algae (Arthrospira platensis) as an ingredient in pasta: free radical scavenging activity, sensory and cooking characteristics evaluation. International Journal of Food Sciences and Nutrition, 62(8), 811-813.
  • Zoulias, E. I., Oreopoulou, V., & Kounalaki, E. (2002). Effect of fat and sugar replacement on cookie properties. Journal of the Science of Food and Agriculture, 82(14), 1637-1644. doi:https://doi.org/10.1002/jsfa.1230
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Ayşe Neslihan Dündar 0000-0003-2084-7076

Oya Irmak Şahin 0000-0003-2225-7993

Furkan Türker Sarıcaoğlu 0000-0003-1173-5793

Erken Görünüm Tarihi 4 Nisan 2023
Yayımlanma Tarihi 16 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 48 Sayı: 3

Kaynak Göster

APA Dündar, A. N., Şahin, O. I., & Sarıcaoğlu, F. T. (2023). LOW-FAT COOKIES WITH CHLORELLA VULGARIS: EFFECTS ON DOUGH RHEOLOGY, PHYSICAL, TEXTURAL AND SENSORY PROPERTIES OF COOKIES. Gıda, 48(3), 526-544. https://doi.org/10.15237/gida.GD22076
AMA Dündar AN, Şahin OI, Sarıcaoğlu FT. LOW-FAT COOKIES WITH CHLORELLA VULGARIS: EFFECTS ON DOUGH RHEOLOGY, PHYSICAL, TEXTURAL AND SENSORY PROPERTIES OF COOKIES. GIDA. Haziran 2023;48(3):526-544. doi:10.15237/gida.GD22076
Chicago Dündar, Ayşe Neslihan, Oya Irmak Şahin, ve Furkan Türker Sarıcaoğlu. “LOW-FAT COOKIES WITH CHLORELLA VULGARIS: EFFECTS ON DOUGH RHEOLOGY, PHYSICAL, TEXTURAL AND SENSORY PROPERTIES OF COOKIES”. Gıda 48, sy. 3 (Haziran 2023): 526-44. https://doi.org/10.15237/gida.GD22076.
EndNote Dündar AN, Şahin OI, Sarıcaoğlu FT (01 Haziran 2023) LOW-FAT COOKIES WITH CHLORELLA VULGARIS: EFFECTS ON DOUGH RHEOLOGY, PHYSICAL, TEXTURAL AND SENSORY PROPERTIES OF COOKIES. Gıda 48 3 526–544.
IEEE A. N. Dündar, O. I. Şahin, ve F. T. Sarıcaoğlu, “LOW-FAT COOKIES WITH CHLORELLA VULGARIS: EFFECTS ON DOUGH RHEOLOGY, PHYSICAL, TEXTURAL AND SENSORY PROPERTIES OF COOKIES”, GIDA, c. 48, sy. 3, ss. 526–544, 2023, doi: 10.15237/gida.GD22076.
ISNAD Dündar, Ayşe Neslihan vd. “LOW-FAT COOKIES WITH CHLORELLA VULGARIS: EFFECTS ON DOUGH RHEOLOGY, PHYSICAL, TEXTURAL AND SENSORY PROPERTIES OF COOKIES”. Gıda 48/3 (Haziran 2023), 526-544. https://doi.org/10.15237/gida.GD22076.
JAMA Dündar AN, Şahin OI, Sarıcaoğlu FT. LOW-FAT COOKIES WITH CHLORELLA VULGARIS: EFFECTS ON DOUGH RHEOLOGY, PHYSICAL, TEXTURAL AND SENSORY PROPERTIES OF COOKIES. GIDA. 2023;48:526–544.
MLA Dündar, Ayşe Neslihan vd. “LOW-FAT COOKIES WITH CHLORELLA VULGARIS: EFFECTS ON DOUGH RHEOLOGY, PHYSICAL, TEXTURAL AND SENSORY PROPERTIES OF COOKIES”. Gıda, c. 48, sy. 3, 2023, ss. 526-44, doi:10.15237/gida.GD22076.
Vancouver Dündar AN, Şahin OI, Sarıcaoğlu FT. LOW-FAT COOKIES WITH CHLORELLA VULGARIS: EFFECTS ON DOUGH RHEOLOGY, PHYSICAL, TEXTURAL AND SENSORY PROPERTIES OF COOKIES. GIDA. 2023;48(3):526-44.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/