Derleme
BibTex RIS Kaynak Göster

SOĞUK PLAZMA TEKNOLOJİSİNİN GIDA GÜVENLİĞİ ALANINDAKİ POTANSİYEL UYGULAMALARININ ARAŞTIRILMASI

Yıl 2023, Cilt: 48 Sayı: 3, 614 - 626, 16.06.2023
https://doi.org/10.15237/gida.GD22102

Öz

Günümüzde sağlıklı gıdaların tüketimine yönelik talep giderek artmaktadır. Her ne kadar bu gıdaların başında meyve, sebzeler ve onlardan yapılan gıdalar gelse de et ve et ürünlerinin de önemi büyük olmaktadır. Ancak bu gıdalardan meydana gelen gıda zehirlenme vakaları bulunmaktadır. Ayrıca pek çok ürünün mikrobiyal yükü sebebinden dolayı ihracatta sorunlar ile karşılaşılmaktadır. Bu ürünlerin mikrobiyal yükünün azaltılması için farklı kimyasallar kullanılmaktadır. Ancak bu kimyasalların bıraktıkları kalıntı sebebi ile pek çok ülkede kullanılmamaktadır. Dolayısıyla farklı yöntemler araştırılıp yeni teknolojiler geliştirilmektedir. Bu teknolojilerden bazıları hidrostatik basınç, ultrases, vurgulu elektrik alan, ışınlama ve vurgulu ışık gibi yöntemlerdir. Bu derlemenin amacı ise bu teknolojilerden biri olan soğuk plazma sisteminin gıdaların sterilizasyonu amacı ile kullanım olanaklarının araştırılmasıdır. Basit bir ifadeyle, soğuk plazma maddenin dördüncü hali olup atmosferik veya düşük basınç koşulları altında üretilen iyonik gaz, polar iyonlar, gaz atomlarından oluşan gaz bileşimi olarak tanımlanabilmektedir. Soğuk plazmanın pek çok avantajı bulunmasının yanı sıra, farklı amaçlar için kullanım olanağı da bulunmaktadır. Yüzey dezenfeksiyonu ve detoksifikasyonun yanı sıra ambalajlı ürünlerin, taze meyve ve sebzelerin, sıvı gıdaların, et ve et ürünlerinin sterilizasyonunda da kullanılmaktadır.

Kaynakça

  • Aktop, S. (2016). Soğuk plazma tekniğinin et ürünlerindeki bazı patojenler üzerine etkisi, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü.
  • Almeida, F.D.L., Cavalcante, R.S., Cullen, P. J., Frias, J.M., Paula Bourke, P., Fernandes, F. A.N and Rodrigues, S. (2015). Effects of atmospheric cold plasma and ozone on prebiotic orange juice, Innovative Food Science and Emerging Technologies, 32,127–135, doi: 10.1016/j.ifset.2015.09.001 INNFOO 1357.
  • Amanpour, A., Vandamme, J., Polat, S., Kelebek, H., Durme, J.V. and Sellia, S. (2019). Non-thermal plasma effects on the lipoxygenase enzyme activity, aroma and phenolic profiles of olive oil, Innovative Food Science and Emerging Technologies, 54, 123-131. doi.org/10.1016/j.ifset.2019.04.004.
  • Basaran, P., Basaran-Akgul, N., ve Oksuz L. (2008). Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiogy, 25, 626-632. doi.org/10.1016/j.fm.2007.12.005.
  • Bermudez-aguirre, D., (2020). Advances in cold plasma applications for food saftey and preservation. Elsevier, Richland.
  • Bhatt, H.K., Prasad, RV., Joshi, D.C and Sagarika, N. (2018). Non-Thermal plasma system for decontamination of fruits, vegetables and spices: A review, International Journal of Chemical Studies, 6(2), 619-627.
  • Boudam, M. K., Moisan, M., Saoudi, B., Popovici, C., Gherardi, N., & Massines, F. (2006). Bacterial spores inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. Journal of Physics D: Applied Physics, 39, 3494–3507. Doi.org/10.1088/0022-3727/39/16/S07.
  • Bozkurt, D. (2014). Soğuk plazma uygulamasının vtaminler ve polifenol oksidaz (pfo) enzimi aktivites üzerine etkisi , Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enistitüsü.
  • Bubler, S., Ehlbeck, J and Schlüter, O.K. (2017). Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato, Innovative Food Science and Emerging, Technologies, 40, 78-86 doi.org/10.1016/j.ifset.2016.05.007.
  • Chizoba Ekezie, F.-G., Sun, D.-W., Cheng, J.-H., (2017). A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci. Technol. 69, 46–58. DOI: 10.1016/j.tifs.2017.08.007.
  • Choi, E.J., Yang, H.S., Park, H.W and Chun, H.H. (2018). Inactivation of Escherichia coli O157:H7 and Staphylococcus aureus in red pepper powder using a combination of radio frequency thermal and indirect dielectric barrier discharge plasma non-thermal treatments, LWT - Food Science and Technology, 93,477-484, doi.org/10.1016/j.lwt.2018.03.081.
  • Chutia. H., Kalita, D., Mahanta, C.L., Ojah. N and Choudhury. A.J. (2019). Kinetics of inactivation of peroxidase and polyphenol oxidase in tender coconut water by dielectric barrier discharge plasma, LWT - Food Science and Technology, 101, 625-629, doi.org/10.1016/j.lwt.2018.11.071.
  • Daşan, B.G. (2016). Küf dekontaminasyonu için akışkan yatak atmosferik basınç plazma reaktörü tasarımı, Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enistitüsü.
  • Devi,Y., Thirumdas, R., Sarangapani, C., Deshmukh, R.R and Annapure, U.S. (2017). Influence of cold plasma on fungal growth and aflatoxins production on groundnuts, Food Control, 77, 187-191, doi.org/10.1016/j.foodcont.2017.02.019.
  • Dinçer, C ve Topuz, A. (2018). Meyve suyu işlemede ultrases kullanımı, The journal of food, 43 (4), 569-581, doi.org/10.15237/gida.GD18037.
  • Ekezie, F.-G.C., Sun, D.-W., Cheng, J.-H., (2017a). A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci. Technol. 69, 46–58. https://doi.org/10.1016/j.tifs.2017.08.007.
  • Erkmen, O. (2010). Gıda Mikrobiolojisi (2. Baskı). Ankara: Eflatun Basım Dağıtım Yayıncılık Danışmanlık Yatırım ve Ticaret Limited Şirketi.
  • Fern ́andez, A., & Thompson, A. (2012). The inactivation of Salmonella by cold atmospheric plasma treatment. Food Research International, 45(2), 678–684. https:// doi.org/10.1016/ j. foodres. 2011.04.009.
  • Fernández, A., Noriega, E and Thompson, A. (2013). Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology, Food Microbiology, 33, 24-29, doi.org/10.1016/j.fm.2012.08.007.
  • Fıratoğlu, A. (2015). “Soğuk plazmanın içme sularında Escherichia coli üzerine etkisinin araştırılması”, Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü.
  • Filho, E.G.A., Rodrigues, T.H.S., Fernandes, F.A.N., Brito, E.S.d., Cullen, .P.J.F, Friase. J.M., Bourke.P Cavalcante, R.S., Almeida, F.D.L. and Rodrigues, S. (2019). An untargeted chemometric evaluation of plasma and ozone processing effect on volatile compounds in orange juice, Innovative Food Science and Emerging Technologies, 53, 63-69, doi.org/10.1016/j.ifset.2017.10.001.
  • Gallagher, M. J., et al. (2007). Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge. IEEE Transactions on Plasma Science, 35 (5), 1501–1510. https://doi.org/10.1109/TPS.2007.905209. Oct. 2007.
  • Garofulic, I.E., Jambrak, A.R., Milosevic, S., Dragovic-Uzelac, V., Zoric, Z and Herceg, Z. (2015). The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice, LWT - Food Science and Technology journ, 62, 894-900, doi.org/10.1016/j.lwt.2014.08.036.
  • Göçmen, J.S., İştar, E.H., Çökeliler, D., Mutlu, M., Can. G.K., Alparslan, S., Çetin, C.,Kartal, N., Özçelik, U.C ve Aycan. Ç. (2017). Kan ve el kültüründen izole edilen koagülaz-negatif stafilokok izolatlarının biyofilm oluşumunun plazma polimerizasyon tekniği ile kaplanmış mikroplaklarda incelenmesi: deneysel model, Flora, 22(4), 166-174, DOI: 10.5578/flora.66226.
  • Gök, V., Aktop, S., Özkan, M ve Tomard, O. (2019). The effects of atmospheric cold plasma on inactivation of Listeria monocytogenes and Staphylococcus aureus and some quality characteristics of pastırma A dry-cured beef product, Innovative Food Science and Emerging Technologies, 56, 102-188, doi.org/10.1016/j.ifset.2019.102188.
  • Guo, L., Zhang, J., Liu, D., He, T., Xu, R., Qi, Y., Zhang, H., Ron, M., Kong, M. G. (2020). Microbial inactivation in model tissues treated by surface discharge plasma, Journal of Physics D: Applied Physics, 53(1), 015205, DOI: 10.1088/1361-6463/ab4829.
  • Gündüz, G.T. ve Kışla, D., (2014). Applications of Non-Thermal Plasma Technology for Food Decontamination, 240 p. 2nd International Congress on Food Technology, Kuşadası, Turkey, November 05-07, DOI: 10.1111/jam.14823.
  • Jiang, Y., Sokorai, K., Pyrgiotakis, G., Demokritou, P., Li, X., Mukhopadhyay, S., Jin, T and Fan, X. (2017). Cold plasma- activated hydrogen peroxide aerosol inactivates Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe, International Journal of Food Microbiology, 249, 53-60, DOI: 10.1016/j.ijfoodmicro.2017.03.004.
  • Keskin, O. (2017). “Argon Plazma Jet Üretimi”, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü. Khani, M.R., Shokri, B. And Khajeh, K. (2017). Studying the performance of dielectric barrier discharge and gliding arc plasma reactors in tomato peroxidase inactivation, Journal of Food Engineering, 197, 107-112, DOI: 10.1016/j.jfoodeng.2016.11.012.
  • Kim, J. E., Lee, D. U., Min, S. C. (2014). Microbial decontamination of red pepper powder by cold plasma, Food Microbiology, 38, 128-136, doi.org/10.1016/j.fm.2013.08.019.
  • Kim, J. E., Oh, Y. J., Won, M. Y., Lee, K. S., Min, S. C. (2017). Microbial decontamination of onion powder using microwave-powered cold plasma treatments, Food Microbiology, 62,112-123, DOI: 10.1016/j.fm.2016.10.006.
  • Kim, J.H.K and Min. S.C. (2018). Moisture vaporization-combined helium dielectric barrier dischargecold plasma treatment for microbial decontamination of onion flakes, Food Control, 84, 321-329, doi.org/10.1016/j.foodcont.2017.08.018.
  • Kim, S.Y., Bang, I.H and Sea C. and Min, S.C. (2018). Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment, Journal of Food Engineering, 242, 55-67, doi.org/10.1016/j.jfoodeng.2018.08.020.
  • Kogelschatz, U., (2003). Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 23, 1–46.
  • Korkmaz, A ve Gündüz, T.G. (2018). Meyve ve Sebzelerde UV-C Işık Uygulamaları ile Küf İnhibisyonu, Akademik Gıda, 16(4), 458-469.
  • Laroussi, M. (2005). Low temperature plasma-based sterilization: Overview and state- of-the-art. Plasma Processes and Polymers, 2, 391–400, doi. Org/10.1002/ppap.200400078.
  • Laroussi, M., & Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 233, 81–86, doi.org/10.1016/j.ijms.2003.11.016.
  • Lee, H., Kim, J.E., Chung, M.S and Min, S.C. (2015). Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs, Food Microbiology, 51, 74-80, /doi.org/10.1016/j.fm.2015.05.004.
  • Li, X., Li, M., Ji, N., Jin, P., Zhang, J., Zheng, Y., Zhang, X. and Li, F. (2019). Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit, LWT – Food Science and Technology, doi.org/10.1016/j.lwt.2019.108447.
  • May, B. K., Fickak, A. (2003). The efficacy of chlorinated water treatments in minimizing yeast and mold growth in fresh and semi-dried tomatoes, Drying Technology, 21(6), 1127-1135, doi.org/10.1081/DRT-120021879.
  • Mehta, D., Nitya Sharma, N., Bansal, V., Sangwan, R.S and Yadav, S.K. (2019). Impact of ultrasonication, ultraviolet and atmospheric cold plasma processing on quality parameters of tomato-based beverage in comparison with thermal processing, Innovative Food Science and Emerging Technologies, 52, 343-349, DOI: 10.1016/j.ifset.2019.01.015.
  • Min, S.C., Roh, S.H., Niemira, B.A., Boyd, G., Sites, J.E., Uknalis, J and Fan, X. (2017). In-package inhibition of E. Coli O157:H7 on bulk Romaine lettuce using cold plasm, Food Microbiology, 65, 1-6, DOI: 10.1016/j.fm.2017.01.010.
  • Min, S.C., Roh, S.H., Niemira, B.A., Boyd. G., Sites, J.E., Fan, X., Kimberly Sokorai, K. and Jin, T.Z. (2018). In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation, Food Research International, 108, 378-386, doi.org/10.1016/j.foodres.2018.03.033.
  • Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 159–170. https:/ /doi.org/10.1007/s12393-011-9041-9.
  • Misra, N.N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J.P., Keener, K.M. and Cullen, P.J., (2014). Inpackage atmospheric pressure cold plasma treatment of strawberries, J. Food Eng, 125, 131–138, doi.org/10.1016/j.jfoodeng.2013.10.023.
  • Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and Applied Chemistry, 74, 349–358, doi.org/10.1351/pac200274030349.
  • Muhammad, A. I., Li, Y., Liao, X., Liu, D., Ye, X., Chen, S., Hu, Y., Wang, J., Ding, T. (2019). Effect of dielectric barrier discharge plasma on background microflora and physicochemical properties of tiger nut milk, Food Control, 96, 119-127, doi.org/10.1016/j.foodcont.2018.09.010.
  • Muranyi, P., Wunderlich, J., & Langowski, H. C. (2010). Modification of bacterial structures by a low-temperature gas plasma and influence on packaging material. Journal of Applied Microbiology, 109(6), 1875–1885, DOI: 10.1111/j.1365-2672.2010.04815.x.
  • Mutlu, M. (2014). Gıda dekontaminasyonuna yönelik düşük sıcaklık-atmosferik basınç akışkan yatak plazma reaktörü tasarımı, Tubitak Projesi No: 113O779, Hacettepe Üniversitesi Fen Bilimleri Enistitüsü.
  • Niemira, B.A. and Sites, J., (2008). Cold plasma inactivates Salmonella Stanley and Escherichia coli O157: H7 inoculated on golden delicious apples , J. Food Prot, 71, 1357–1365, DOI: 10.4315/0362-028x-71.7.1357.
  • Nishime, T.M.C., Borges, A.C., Koga-Ito, C.Y., Machida, M., Hein, L.R.O., Kostov, K.G., (2017). Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf. Coating. Technol. 312, 19–24. https://doi.org/ 10. 1016/ j. surfcoat. 2016.07.076.
  • Öztekin, S., Zorlugenç, B., Zorlugenç, F. K. (2006). Effects of ozone treatment on microflora of dried figs, Journal of Food Engineering, 75(3), 396-399, doi.org/10.1016/j.jfoodeng.2005.04.024.
  • Pankaj, S. K., & Keener, K. M. (2017). Cold plasma: Background, applications and current trends. Current Opinion in Food Science, doi.org/10.1016/j.cofs.2017.07.008.
  • Pankaj, S.K., Misra, N.N and Cullen, P.J. (2013). Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge, Innovative Food Science and Emerging Technologies, 19, 153- 157, doi.org/10.1016/j.ifset.2013.03.001.
  • Park, B. J. Takatorı, K., Sugıta-Konıshı, Y., Kım, I.-H., Lee, M. H., Han, D. W., Chung, K. H., Hyun, S. O., Park, J. C. (2007). Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure, Surface and Coatings Technology, 201, 5733-5737, doi.org/10.1016/j.surfcoat.2006.07.092.
  • Pignata, C., D'Angelo, D., Basso, D., Cavallero, M. C., Beneventi, S., Tartaro, D., Meineri, V., Gilli, G. (2014). Low‐temperature, low‐pressure gas plasma application on Aspergillus brasiliensis, Escherichia coli and pistachios, Journal of Applied Microbiology, 116(5), 1137-1148, doi.org/10.1111/jam.12448.
  • Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G., and Rocculi, P., (2015). Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit, Postharvest Biol. Technol, 107, 55–65, doi.org/10.1016/j.postharvbio.2015.04.008.
  • Roth, J.R., (2001). Industrial Plasma Engineering: Applications to Nonthermal Plasma Processing (Vol. 2). Bristol: IOP Publishing.
  • Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., and Julak, J., (2015). Nonthermal plasma a tool for decontamination and disinfection, Biotechnol. Adv, 33, 1108–1119, doi.org/10.1016/j.biotechadv.2015.01.002.
  • Selçuk, M, Lutfi Oksuz, L. ve Basaran, P. (2008). Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment, Bioresource Technology, 99, 5104–5109, DOI: 10.1016/j.biortech.2007.09.076.
  • Sen, Y., Onal-Ulusoy, B., Mutlu, M. (2019). Aspergillus decontamination in hazelnuts: Evaluation of atmospheric and low-pressure plasma technology, Innovative Food Science & Emerging Technologies, 54, 235-242, doi.org/10.1016/j.ifset.2019.04.014.
  • Shi, H., Ileleji, K., Stroshine, R. L., Keener, K., Jensen, J. L. (2017). Reduction of aflatoxin in corn by high voltage atmospheric cold plasma, Food and Bioprocess Technology, 10(6), 1042-1052.
  • Surowsky, B., Bußler, S., Schlüter, O. K. (2016). Cold plasma interactions with food constituents in liquid and solid food matrices, In Cold Plasma in Food and Agriculture, Academic Press, DOI: 10.1016/j.tifs.2016.07.001.
  • Surowsky, B., Fischer, A., Schlueter, O. And Knorr, D. (2013). Cold plasma effects on enzyme activity in a model foodnsystem, Innovative Food Science and Emerging Technologies, 19, 146-152, doi.org/10.1016/j.ifset.2013.04.002.
  • Şen, Y. (2015). Atmosferik basınç plazma uygulamasının gıdaların dekontaminasyonu ve detoksifikasyonu amacıyla kullanımı, Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enistitüsü.
  • Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: A novel non- thermal technology for food processing. Food Biophysics, 10, 1–11. https://doi.org/ 10. 1007/s11483-014-9382-z.
  • Thomas, M., Mittal, K.L., (2013). Atmospheric Pressure Plasma Treatment of Polymers: Relevance to Adhesion, Atmospheric Pressure Plasma Treatment of Polymers: Relevance to Adhesion. Wiley, Salem.
  • Won, M.Y, Lee, S.J and Min, S.C. (2017). Mandarin preservation by microwave-powered cold plasma treatment Innovative Food Science and Emerging Technologies, 39, 25-32, doi.org/10.1016/j.ifset.2016.10.021.
  • Yadav, B., Spinelli, A. C., Govindan, B. N., Tsui, Y. Y., McMullen, L. M., Roopesh, M. S. (2019). Cold plasma treatment of ready-to-eat ham: Influence of process conditions and storage on inactivation of Listeria innocua, Food Research International, 123, 276-285, doi.org/ 10.1016/j.foodres.2019.04.065.
  • Yüksel, Ç.Y ve Karagözlü, N. (2017). Soğuk Atmosferik Plazma Teknolojisi ve Gıdalarda Kullanımı, Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 14(2), 81-86, doi.org/10.25308/aduziraat.332684.
  • Ziuzina, D., Patil, S., Cullen, P.J., Keener, K.M., Bourke, P., (2013). Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J. Appl. Microbiol. 114, 778–787. https://doi.org/10.1111/jam.12087.
  • Zorlugenç, B., Zorlugenç, F. K., Öztekin, S., Evliya, I. B. (2008). The influence of gaseous ozone and ozonated water on microbial flora and degradation of aflatoxin B1 in dried figs, Food and Chemical Toxicology, 46(12), 3593-3597, doi.org/10.1016/j.fct.2008.09.003.

INVESTIGATION OF THE POTENTIAL APPLICATIONS OF COLD PLASMA TECHNOLOGY IN FOOD SAFETY

Yıl 2023, Cilt: 48 Sayı: 3, 614 - 626, 16.06.2023
https://doi.org/10.15237/gida.GD22102

Öz

Nowadays, the demand for the consumption of healthy foods is increasing day by day. Although fruits, vegetables, and foods made from them come first among these foods, meat and meat products are of great importance. However, there have been reports of food poisoning from such meals. Furthermore, problems are encountered in exports due to the microbial load of many such products. Different chemicals are used to reduce the microbial load of these products. However, due to the residue, these compounds are not utilized in many countries. Therefore, different methods are being investigated, and new technologies are being developed. Hydrostatic pressure, ultrasound, pulsed electric fields, irradiation, and pulsed light are some of these technologies. The purpose of this review is to investigate the possibilities of using the cold plasma system, which is one of these technologies, for the sterilization of foods. In simple terms, cold plasma is the fourth state of matter and is defined as a gaseous composition of ionic gas, polar ions, and gas atoms produced under atmospheric or low-pressure conditions. In addition to the many advantages of cold plasma, it has the possibility of being used for different purposes. Besides surface disinfection and detoxification, it is also used in the sterilization of packaged products, fresh fruits and vegetables, liquid foods, and meat and meat products.

Kaynakça

  • Aktop, S. (2016). Soğuk plazma tekniğinin et ürünlerindeki bazı patojenler üzerine etkisi, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü.
  • Almeida, F.D.L., Cavalcante, R.S., Cullen, P. J., Frias, J.M., Paula Bourke, P., Fernandes, F. A.N and Rodrigues, S. (2015). Effects of atmospheric cold plasma and ozone on prebiotic orange juice, Innovative Food Science and Emerging Technologies, 32,127–135, doi: 10.1016/j.ifset.2015.09.001 INNFOO 1357.
  • Amanpour, A., Vandamme, J., Polat, S., Kelebek, H., Durme, J.V. and Sellia, S. (2019). Non-thermal plasma effects on the lipoxygenase enzyme activity, aroma and phenolic profiles of olive oil, Innovative Food Science and Emerging Technologies, 54, 123-131. doi.org/10.1016/j.ifset.2019.04.004.
  • Basaran, P., Basaran-Akgul, N., ve Oksuz L. (2008). Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiogy, 25, 626-632. doi.org/10.1016/j.fm.2007.12.005.
  • Bermudez-aguirre, D., (2020). Advances in cold plasma applications for food saftey and preservation. Elsevier, Richland.
  • Bhatt, H.K., Prasad, RV., Joshi, D.C and Sagarika, N. (2018). Non-Thermal plasma system for decontamination of fruits, vegetables and spices: A review, International Journal of Chemical Studies, 6(2), 619-627.
  • Boudam, M. K., Moisan, M., Saoudi, B., Popovici, C., Gherardi, N., & Massines, F. (2006). Bacterial spores inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. Journal of Physics D: Applied Physics, 39, 3494–3507. Doi.org/10.1088/0022-3727/39/16/S07.
  • Bozkurt, D. (2014). Soğuk plazma uygulamasının vtaminler ve polifenol oksidaz (pfo) enzimi aktivites üzerine etkisi , Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enistitüsü.
  • Bubler, S., Ehlbeck, J and Schlüter, O.K. (2017). Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato, Innovative Food Science and Emerging, Technologies, 40, 78-86 doi.org/10.1016/j.ifset.2016.05.007.
  • Chizoba Ekezie, F.-G., Sun, D.-W., Cheng, J.-H., (2017). A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci. Technol. 69, 46–58. DOI: 10.1016/j.tifs.2017.08.007.
  • Choi, E.J., Yang, H.S., Park, H.W and Chun, H.H. (2018). Inactivation of Escherichia coli O157:H7 and Staphylococcus aureus in red pepper powder using a combination of radio frequency thermal and indirect dielectric barrier discharge plasma non-thermal treatments, LWT - Food Science and Technology, 93,477-484, doi.org/10.1016/j.lwt.2018.03.081.
  • Chutia. H., Kalita, D., Mahanta, C.L., Ojah. N and Choudhury. A.J. (2019). Kinetics of inactivation of peroxidase and polyphenol oxidase in tender coconut water by dielectric barrier discharge plasma, LWT - Food Science and Technology, 101, 625-629, doi.org/10.1016/j.lwt.2018.11.071.
  • Daşan, B.G. (2016). Küf dekontaminasyonu için akışkan yatak atmosferik basınç plazma reaktörü tasarımı, Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enistitüsü.
  • Devi,Y., Thirumdas, R., Sarangapani, C., Deshmukh, R.R and Annapure, U.S. (2017). Influence of cold plasma on fungal growth and aflatoxins production on groundnuts, Food Control, 77, 187-191, doi.org/10.1016/j.foodcont.2017.02.019.
  • Dinçer, C ve Topuz, A. (2018). Meyve suyu işlemede ultrases kullanımı, The journal of food, 43 (4), 569-581, doi.org/10.15237/gida.GD18037.
  • Ekezie, F.-G.C., Sun, D.-W., Cheng, J.-H., (2017a). A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci. Technol. 69, 46–58. https://doi.org/10.1016/j.tifs.2017.08.007.
  • Erkmen, O. (2010). Gıda Mikrobiolojisi (2. Baskı). Ankara: Eflatun Basım Dağıtım Yayıncılık Danışmanlık Yatırım ve Ticaret Limited Şirketi.
  • Fern ́andez, A., & Thompson, A. (2012). The inactivation of Salmonella by cold atmospheric plasma treatment. Food Research International, 45(2), 678–684. https:// doi.org/10.1016/ j. foodres. 2011.04.009.
  • Fernández, A., Noriega, E and Thompson, A. (2013). Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology, Food Microbiology, 33, 24-29, doi.org/10.1016/j.fm.2012.08.007.
  • Fıratoğlu, A. (2015). “Soğuk plazmanın içme sularında Escherichia coli üzerine etkisinin araştırılması”, Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü.
  • Filho, E.G.A., Rodrigues, T.H.S., Fernandes, F.A.N., Brito, E.S.d., Cullen, .P.J.F, Friase. J.M., Bourke.P Cavalcante, R.S., Almeida, F.D.L. and Rodrigues, S. (2019). An untargeted chemometric evaluation of plasma and ozone processing effect on volatile compounds in orange juice, Innovative Food Science and Emerging Technologies, 53, 63-69, doi.org/10.1016/j.ifset.2017.10.001.
  • Gallagher, M. J., et al. (2007). Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge. IEEE Transactions on Plasma Science, 35 (5), 1501–1510. https://doi.org/10.1109/TPS.2007.905209. Oct. 2007.
  • Garofulic, I.E., Jambrak, A.R., Milosevic, S., Dragovic-Uzelac, V., Zoric, Z and Herceg, Z. (2015). The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice, LWT - Food Science and Technology journ, 62, 894-900, doi.org/10.1016/j.lwt.2014.08.036.
  • Göçmen, J.S., İştar, E.H., Çökeliler, D., Mutlu, M., Can. G.K., Alparslan, S., Çetin, C.,Kartal, N., Özçelik, U.C ve Aycan. Ç. (2017). Kan ve el kültüründen izole edilen koagülaz-negatif stafilokok izolatlarının biyofilm oluşumunun plazma polimerizasyon tekniği ile kaplanmış mikroplaklarda incelenmesi: deneysel model, Flora, 22(4), 166-174, DOI: 10.5578/flora.66226.
  • Gök, V., Aktop, S., Özkan, M ve Tomard, O. (2019). The effects of atmospheric cold plasma on inactivation of Listeria monocytogenes and Staphylococcus aureus and some quality characteristics of pastırma A dry-cured beef product, Innovative Food Science and Emerging Technologies, 56, 102-188, doi.org/10.1016/j.ifset.2019.102188.
  • Guo, L., Zhang, J., Liu, D., He, T., Xu, R., Qi, Y., Zhang, H., Ron, M., Kong, M. G. (2020). Microbial inactivation in model tissues treated by surface discharge plasma, Journal of Physics D: Applied Physics, 53(1), 015205, DOI: 10.1088/1361-6463/ab4829.
  • Gündüz, G.T. ve Kışla, D., (2014). Applications of Non-Thermal Plasma Technology for Food Decontamination, 240 p. 2nd International Congress on Food Technology, Kuşadası, Turkey, November 05-07, DOI: 10.1111/jam.14823.
  • Jiang, Y., Sokorai, K., Pyrgiotakis, G., Demokritou, P., Li, X., Mukhopadhyay, S., Jin, T and Fan, X. (2017). Cold plasma- activated hydrogen peroxide aerosol inactivates Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe, International Journal of Food Microbiology, 249, 53-60, DOI: 10.1016/j.ijfoodmicro.2017.03.004.
  • Keskin, O. (2017). “Argon Plazma Jet Üretimi”, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü. Khani, M.R., Shokri, B. And Khajeh, K. (2017). Studying the performance of dielectric barrier discharge and gliding arc plasma reactors in tomato peroxidase inactivation, Journal of Food Engineering, 197, 107-112, DOI: 10.1016/j.jfoodeng.2016.11.012.
  • Kim, J. E., Lee, D. U., Min, S. C. (2014). Microbial decontamination of red pepper powder by cold plasma, Food Microbiology, 38, 128-136, doi.org/10.1016/j.fm.2013.08.019.
  • Kim, J. E., Oh, Y. J., Won, M. Y., Lee, K. S., Min, S. C. (2017). Microbial decontamination of onion powder using microwave-powered cold plasma treatments, Food Microbiology, 62,112-123, DOI: 10.1016/j.fm.2016.10.006.
  • Kim, J.H.K and Min. S.C. (2018). Moisture vaporization-combined helium dielectric barrier dischargecold plasma treatment for microbial decontamination of onion flakes, Food Control, 84, 321-329, doi.org/10.1016/j.foodcont.2017.08.018.
  • Kim, S.Y., Bang, I.H and Sea C. and Min, S.C. (2018). Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment, Journal of Food Engineering, 242, 55-67, doi.org/10.1016/j.jfoodeng.2018.08.020.
  • Kogelschatz, U., (2003). Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 23, 1–46.
  • Korkmaz, A ve Gündüz, T.G. (2018). Meyve ve Sebzelerde UV-C Işık Uygulamaları ile Küf İnhibisyonu, Akademik Gıda, 16(4), 458-469.
  • Laroussi, M. (2005). Low temperature plasma-based sterilization: Overview and state- of-the-art. Plasma Processes and Polymers, 2, 391–400, doi. Org/10.1002/ppap.200400078.
  • Laroussi, M., & Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 233, 81–86, doi.org/10.1016/j.ijms.2003.11.016.
  • Lee, H., Kim, J.E., Chung, M.S and Min, S.C. (2015). Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs, Food Microbiology, 51, 74-80, /doi.org/10.1016/j.fm.2015.05.004.
  • Li, X., Li, M., Ji, N., Jin, P., Zhang, J., Zheng, Y., Zhang, X. and Li, F. (2019). Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit, LWT – Food Science and Technology, doi.org/10.1016/j.lwt.2019.108447.
  • May, B. K., Fickak, A. (2003). The efficacy of chlorinated water treatments in minimizing yeast and mold growth in fresh and semi-dried tomatoes, Drying Technology, 21(6), 1127-1135, doi.org/10.1081/DRT-120021879.
  • Mehta, D., Nitya Sharma, N., Bansal, V., Sangwan, R.S and Yadav, S.K. (2019). Impact of ultrasonication, ultraviolet and atmospheric cold plasma processing on quality parameters of tomato-based beverage in comparison with thermal processing, Innovative Food Science and Emerging Technologies, 52, 343-349, DOI: 10.1016/j.ifset.2019.01.015.
  • Min, S.C., Roh, S.H., Niemira, B.A., Boyd, G., Sites, J.E., Uknalis, J and Fan, X. (2017). In-package inhibition of E. Coli O157:H7 on bulk Romaine lettuce using cold plasm, Food Microbiology, 65, 1-6, DOI: 10.1016/j.fm.2017.01.010.
  • Min, S.C., Roh, S.H., Niemira, B.A., Boyd. G., Sites, J.E., Fan, X., Kimberly Sokorai, K. and Jin, T.Z. (2018). In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation, Food Research International, 108, 378-386, doi.org/10.1016/j.foodres.2018.03.033.
  • Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 159–170. https:/ /doi.org/10.1007/s12393-011-9041-9.
  • Misra, N.N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J.P., Keener, K.M. and Cullen, P.J., (2014). Inpackage atmospheric pressure cold plasma treatment of strawberries, J. Food Eng, 125, 131–138, doi.org/10.1016/j.jfoodeng.2013.10.023.
  • Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Philip, N., & Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and Applied Chemistry, 74, 349–358, doi.org/10.1351/pac200274030349.
  • Muhammad, A. I., Li, Y., Liao, X., Liu, D., Ye, X., Chen, S., Hu, Y., Wang, J., Ding, T. (2019). Effect of dielectric barrier discharge plasma on background microflora and physicochemical properties of tiger nut milk, Food Control, 96, 119-127, doi.org/10.1016/j.foodcont.2018.09.010.
  • Muranyi, P., Wunderlich, J., & Langowski, H. C. (2010). Modification of bacterial structures by a low-temperature gas plasma and influence on packaging material. Journal of Applied Microbiology, 109(6), 1875–1885, DOI: 10.1111/j.1365-2672.2010.04815.x.
  • Mutlu, M. (2014). Gıda dekontaminasyonuna yönelik düşük sıcaklık-atmosferik basınç akışkan yatak plazma reaktörü tasarımı, Tubitak Projesi No: 113O779, Hacettepe Üniversitesi Fen Bilimleri Enistitüsü.
  • Niemira, B.A. and Sites, J., (2008). Cold plasma inactivates Salmonella Stanley and Escherichia coli O157: H7 inoculated on golden delicious apples , J. Food Prot, 71, 1357–1365, DOI: 10.4315/0362-028x-71.7.1357.
  • Nishime, T.M.C., Borges, A.C., Koga-Ito, C.Y., Machida, M., Hein, L.R.O., Kostov, K.G., (2017). Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf. Coating. Technol. 312, 19–24. https://doi.org/ 10. 1016/ j. surfcoat. 2016.07.076.
  • Öztekin, S., Zorlugenç, B., Zorlugenç, F. K. (2006). Effects of ozone treatment on microflora of dried figs, Journal of Food Engineering, 75(3), 396-399, doi.org/10.1016/j.jfoodeng.2005.04.024.
  • Pankaj, S. K., & Keener, K. M. (2017). Cold plasma: Background, applications and current trends. Current Opinion in Food Science, doi.org/10.1016/j.cofs.2017.07.008.
  • Pankaj, S.K., Misra, N.N and Cullen, P.J. (2013). Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge, Innovative Food Science and Emerging Technologies, 19, 153- 157, doi.org/10.1016/j.ifset.2013.03.001.
  • Park, B. J. Takatorı, K., Sugıta-Konıshı, Y., Kım, I.-H., Lee, M. H., Han, D. W., Chung, K. H., Hyun, S. O., Park, J. C. (2007). Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure, Surface and Coatings Technology, 201, 5733-5737, doi.org/10.1016/j.surfcoat.2006.07.092.
  • Pignata, C., D'Angelo, D., Basso, D., Cavallero, M. C., Beneventi, S., Tartaro, D., Meineri, V., Gilli, G. (2014). Low‐temperature, low‐pressure gas plasma application on Aspergillus brasiliensis, Escherichia coli and pistachios, Journal of Applied Microbiology, 116(5), 1137-1148, doi.org/10.1111/jam.12448.
  • Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G., and Rocculi, P., (2015). Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit, Postharvest Biol. Technol, 107, 55–65, doi.org/10.1016/j.postharvbio.2015.04.008.
  • Roth, J.R., (2001). Industrial Plasma Engineering: Applications to Nonthermal Plasma Processing (Vol. 2). Bristol: IOP Publishing.
  • Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., and Julak, J., (2015). Nonthermal plasma a tool for decontamination and disinfection, Biotechnol. Adv, 33, 1108–1119, doi.org/10.1016/j.biotechadv.2015.01.002.
  • Selçuk, M, Lutfi Oksuz, L. ve Basaran, P. (2008). Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment, Bioresource Technology, 99, 5104–5109, DOI: 10.1016/j.biortech.2007.09.076.
  • Sen, Y., Onal-Ulusoy, B., Mutlu, M. (2019). Aspergillus decontamination in hazelnuts: Evaluation of atmospheric and low-pressure plasma technology, Innovative Food Science & Emerging Technologies, 54, 235-242, doi.org/10.1016/j.ifset.2019.04.014.
  • Shi, H., Ileleji, K., Stroshine, R. L., Keener, K., Jensen, J. L. (2017). Reduction of aflatoxin in corn by high voltage atmospheric cold plasma, Food and Bioprocess Technology, 10(6), 1042-1052.
  • Surowsky, B., Bußler, S., Schlüter, O. K. (2016). Cold plasma interactions with food constituents in liquid and solid food matrices, In Cold Plasma in Food and Agriculture, Academic Press, DOI: 10.1016/j.tifs.2016.07.001.
  • Surowsky, B., Fischer, A., Schlueter, O. And Knorr, D. (2013). Cold plasma effects on enzyme activity in a model foodnsystem, Innovative Food Science and Emerging Technologies, 19, 146-152, doi.org/10.1016/j.ifset.2013.04.002.
  • Şen, Y. (2015). Atmosferik basınç plazma uygulamasının gıdaların dekontaminasyonu ve detoksifikasyonu amacıyla kullanımı, Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enistitüsü.
  • Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: A novel non- thermal technology for food processing. Food Biophysics, 10, 1–11. https://doi.org/ 10. 1007/s11483-014-9382-z.
  • Thomas, M., Mittal, K.L., (2013). Atmospheric Pressure Plasma Treatment of Polymers: Relevance to Adhesion, Atmospheric Pressure Plasma Treatment of Polymers: Relevance to Adhesion. Wiley, Salem.
  • Won, M.Y, Lee, S.J and Min, S.C. (2017). Mandarin preservation by microwave-powered cold plasma treatment Innovative Food Science and Emerging Technologies, 39, 25-32, doi.org/10.1016/j.ifset.2016.10.021.
  • Yadav, B., Spinelli, A. C., Govindan, B. N., Tsui, Y. Y., McMullen, L. M., Roopesh, M. S. (2019). Cold plasma treatment of ready-to-eat ham: Influence of process conditions and storage on inactivation of Listeria innocua, Food Research International, 123, 276-285, doi.org/ 10.1016/j.foodres.2019.04.065.
  • Yüksel, Ç.Y ve Karagözlü, N. (2017). Soğuk Atmosferik Plazma Teknolojisi ve Gıdalarda Kullanımı, Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 14(2), 81-86, doi.org/10.25308/aduziraat.332684.
  • Ziuzina, D., Patil, S., Cullen, P.J., Keener, K.M., Bourke, P., (2013). Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J. Appl. Microbiol. 114, 778–787. https://doi.org/10.1111/jam.12087.
  • Zorlugenç, B., Zorlugenç, F. K., Öztekin, S., Evliya, I. B. (2008). The influence of gaseous ozone and ozonated water on microbial flora and degradation of aflatoxin B1 in dried figs, Food and Chemical Toxicology, 46(12), 3593-3597, doi.org/10.1016/j.fct.2008.09.003.
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Janan Hossein Zadeh 0000-0002-1024-9980

Erken Görünüm Tarihi 4 Nisan 2023
Yayımlanma Tarihi 16 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 48 Sayı: 3

Kaynak Göster

APA Hossein Zadeh, J. (2023). INVESTIGATION OF THE POTENTIAL APPLICATIONS OF COLD PLASMA TECHNOLOGY IN FOOD SAFETY. Gıda, 48(3), 614-626. https://doi.org/10.15237/gida.GD22102
AMA Hossein Zadeh J. INVESTIGATION OF THE POTENTIAL APPLICATIONS OF COLD PLASMA TECHNOLOGY IN FOOD SAFETY. GIDA. Haziran 2023;48(3):614-626. doi:10.15237/gida.GD22102
Chicago Hossein Zadeh, Janan. “INVESTIGATION OF THE POTENTIAL APPLICATIONS OF COLD PLASMA TECHNOLOGY IN FOOD SAFETY”. Gıda 48, sy. 3 (Haziran 2023): 614-26. https://doi.org/10.15237/gida.GD22102.
EndNote Hossein Zadeh J (01 Haziran 2023) INVESTIGATION OF THE POTENTIAL APPLICATIONS OF COLD PLASMA TECHNOLOGY IN FOOD SAFETY. Gıda 48 3 614–626.
IEEE J. Hossein Zadeh, “INVESTIGATION OF THE POTENTIAL APPLICATIONS OF COLD PLASMA TECHNOLOGY IN FOOD SAFETY”, GIDA, c. 48, sy. 3, ss. 614–626, 2023, doi: 10.15237/gida.GD22102.
ISNAD Hossein Zadeh, Janan. “INVESTIGATION OF THE POTENTIAL APPLICATIONS OF COLD PLASMA TECHNOLOGY IN FOOD SAFETY”. Gıda 48/3 (Haziran 2023), 614-626. https://doi.org/10.15237/gida.GD22102.
JAMA Hossein Zadeh J. INVESTIGATION OF THE POTENTIAL APPLICATIONS OF COLD PLASMA TECHNOLOGY IN FOOD SAFETY. GIDA. 2023;48:614–626.
MLA Hossein Zadeh, Janan. “INVESTIGATION OF THE POTENTIAL APPLICATIONS OF COLD PLASMA TECHNOLOGY IN FOOD SAFETY”. Gıda, c. 48, sy. 3, 2023, ss. 614-26, doi:10.15237/gida.GD22102.
Vancouver Hossein Zadeh J. INVESTIGATION OF THE POTENTIAL APPLICATIONS OF COLD PLASMA TECHNOLOGY IN FOOD SAFETY. GIDA. 2023;48(3):614-26.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/