Araştırma Makalesi
BibTex RIS Kaynak Göster

EFFECT OF GAMMA IRRADIATION ON FATTY ACID COMPOSITION AND PHYSICOCHEMICAL QUALITY OF MAIZE FLOUR

Yıl 2025, Cilt: 50 Sayı: 2, 235 - 244
https://doi.org/10.15237/gida.GD25021

Öz

Maize is an important staple food and one of the most consumed grains worldwide. In the present study, γ-irradiation effects on nutritional composition, color values and fatty acids profile of maize flour were established. Maize flour samples were irradiated using 60Co source at doses of 0, 2.5, 5.0, 7.5, and 10 kGy. Gamma irradiation modified the fatty acids, causing a significant decrease in the levels of oleic acid (18:1) and linoleic acid (18:2) and an increase in the level of stearic acid (18:0) in maize flour oil. Moreover, total monounsaturated and polyunsaturated fatty acids decreased with increasing dose. The examined nutrient contents were moisture, protein, ash and fat contents. Gamma irradiation did not cause statistically significant changes in dry matter, fat and protein composition of maize flour. While L* value increased due to gamma irradiation, a* and b* color parameters decreased with increasing irradiation dose.

Kaynakça

  • Afify, A., Rashed, M., Ebtesam, A. M., El-Beltagi, H. (2013). Effect of gamma radiation on the lipid profiles of soybean, peanut and sesame seed oils. Grasas y Aceites, 64(4), 356–368. https://doi.org/ 10.3989/gya.119712
  • Al-Bachir, M. (2015). Studies on the physicochemical characteristics of oil extracted from gamma irradiated pistachio (Pistacia vera L.). Food Chemistry, 167, 175–179. https://doi.org/10.1016/j.foodchem.2014.06.020
  • Alberts, J., Lilly, M., Rheeder, J., Burger, H., Shephard, G., Gelderblom, W. (2017). Technological and community-based methods to reduce mycotoxin exposure. Food Control, 73, 101-109, https://www.sciencedirect.com/science/ article/pii/ S0956713516302638
  • Algül, I., Kara, D. (2014). Determination and chemometric evaluation of total aflatoxin, aflatoxin B1, ochratoxin A and heavy metals content in corn flours from Turkey. Food Chemistry, 157, 70–76. https://doi.org/10.1016/ j.foodchem.2014.02.004
  • Anonim, (2025). Türk Gıda Kodeksi. Gıda Işınlama Yönetmeliği (2019/ 30907) https://www.resmigazete.gov.tr/eskiler/2019/10/20191003-1-1.pdf Erişim tarihi: 26.02.2025
  • AOAC, Official Methods of Analysis, 17th ed. Association of Official Analytical Chemists, Maryland, USA, 2000.
  • Apaydin, D., Demirci, A.S., Gecgel, U. (2017). Effect of Gamma Irradiation on Biochemical Properties of Grape Seeds. JAOCS, Journal of the American Oil Chemists’ Society, 94(1), 57–67. https://doi.org/10.1007/s11746-016-2917-3
  • Apaydın, D. (2024). Effect of gamma irradiation on the nutritional composition , phenolic compounds and fatty acids profiles in raw cocoa ( Theobroma cacao L .) beans. Journal of Food Measurement and Characterization, 5305(18), 5297–5305.
  • Aquino, S., Ferreira, F., Helena, D., Ribeiro, B., Corrêa, B., Greiner, R., Lucia, A., Haasis, C. (2005). Evaluation Of Viability Of Aspergillus flavus and Aflatoxins Degradation in Irradiated Samples of Maize. Medical Microbiology, 352–356.
  • Aziz, N.H., Moussa, L.A.A., Far, F.M.E. (2004). Reductıon Of Fungı And Mycotoxıns Formatıon In Seeds By Gamma-Radıatıon. Journal of Food Safety, 24(202), 109–127.
  • Barreira, J.C.M., Antonio, A.L., Günaydi, T., Alkan, H., Bento, A., Luisa Botelho, M., Ferreira, I. C.F.R. (2012). Chemometric characterization of gamma irradiated chestnuts from Turkey. Radiation Physics and Chemistry, 81(9), 1520–1524. https://doi.org/https://doi.org/10.1016/j.radphyschem.2012.01.005
  • Calado, T., Fernández-Cruz, M. L., Cabo Verde, S., Venâncio, A., Abrunhosa, L. (2018). Gamma irradiation effects on ochratoxin A: Degradation, cytotoxicity and application in food. Food Chemistry, 240(April 2017), 463–471. https://doi.org/10.1016/j.foodchem.2017.07.136
  • Darfour, B., Wilson, D. D., Ofosu, D. O., Ocloo, F. C. K. (2012). Physical, proximate, functional and pasting properties of flour produced from gamma irradiated cowpea (Vigna unguiculata, L. Walp). Radiation Physics and Chemistry, 81(4), 450–457. https://doi.org/https://doi.org/10.1016/ j.radphyschem.2011.12.015
  • Di Stefano, V., Pitonzo, R., Bartolotta, A., D’Oca, M. C., Fuochi, P. (2014). Effects of γ-irradiation on the α-tocopherol and fatty acids content of raw unpeeled almond kernels (Prunus dulcis). LWT-Food Science And Technology, 59(1), 572–576. https://doi.org/10.1016/j.lwt.2014.04.055
  • FAO (2019).Organisation for Economic Co-operation and Development/Food and Agriculture Organization of the United Nations, OECD-FAO agricultural outlook 2019-2028. Chapter 3, Cereals OECD Publishing/Rome: Food and Agriculture Organization of the United Nations, Paris. 2019, http://www.fao.org/3/ ca4076en/ca4076en.pdf.
  • Gecgel, U. (2013). Changes in some physicochemical properties and fatty acid composition of irradiated meatballs during storage. Journal Of Food Scıence And Technology-Mysore, 50(3), 505–513. https://doi.org/10.1007/ s13197-011-0375-3
  • Giray, B., Atasayar, S., Sahin, G. (2009). Determinatıon of ochratoxin A and total aflatoxin levels in corn samples from Turkey by enzyme-linked immunosorbent assay. Mycotoxin Research, 25(2), 113–116. https://doi.org/10.1007/ s12550-009-0016-0
  • Gutiérrez, L.F. Belkacemi, K. (2008). Palmitoleic Acid Enrichment of Seabuckthorn (Hippophaë rhamnoides L.) Pulp Oil by Crystallization Process. Separation Science and Technology, 43 (8), 2003–2022. https://doi.org/10.1080/ 01496390802064091.
  • James, A., Zikankuba, V.L. (2018). Mycotoxins contamination in maize alarms food safety in sub-Sahara Africa. Food Control, 90, 372–381. https://doi.org/10.1016/j.foodcont.2018.03.018
  • Jeong, S.G., Yang, J.E., Park, J.H., Ko, S.H., Choi, I.S., Kim, H.M., Chun, H.H., Kwon, M.J., Park, H.W. (2020). Gamma irradiation improves the microbiological safety and shelf-life of kimchi seasoning mixture. LWT-Food Science And Technology, 134. https://doi.org/10.1016/ j.lwt.2020.110144
  • Khalil, O.A.A., Hammad, A.A., Sebaei, A.S. (2021). Aspergillus flavus and Aspergillus ochraceus inhibition and reduction of aflatoxins and ochratoxin A in maize by irradiation. Toxicon, 198(January), 111–120. https://doi.org/10.1016/ j.toxicon.2021.04.029
  • Kos, J., Janić Hajnal, E., Malachová, A., Steiner, D., Stranska, M., Krska, R., Poschmaier, B., Sulyok, M. (2020). Mycotoxins in maize harvested in Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chemistry, 312(May 2019), 126034. https://doi.org/10.1016/j.foodchem.2019.126034
  • Kwon, J.H., Lee, J., Wajea, C., Ahn, J.J., Kim, G.R., Chung, H.W., et al. (2009). The quality of irradiated red ginseng powder following transport from Korea to the United States. Radiation Physics and Chemistry, 78, 643–646.
  • Le, W., Zhang, Z., Li, X., Peng-fei, X., Li, C. (2025). An investigation of the physicochemical properties and bioactive components of oil extracted from gamma-irradiated tiger nuts ( Cyperus esculentus L .). Journal of Food Measurement and Characterization, 19, 1313–1324.
  • Lee, N.Y., Kim, J.K. (2018). Effects of gamma radiation on the physicochemical properties of brown rice and changes in the quality of porridge. Radiation Physics and Chemistry, 152, 89–92. https://doi.org/10.1016/j.radphyschem.2018.07.021
  • Leite, M., Freitas, A., Silva, A. S., Barbosa, J., Ramos, F. (2020). Maize (Zea mays L.) and mycotoxins: A review on optimization and validation of analytical methods by liquid chromatography coupled to mass spectrometry. Trends in Food Science and Technology, 99(March), 542–565. https://doi.org/10.1016/ j.tifs.2020.03.023
  • Li, G., Zheng, X., Huang, D., Chen, X., Meng, F., Lin, M. (2019). Effect of 60Co γ-Irradiation on Physicochemical Properties of Adlay During Storage Period. International Journal of Food Engineering, 15(8), 20180329. https://doi.org/ 10.1515/ijfe-2018-0329.
  • Liu, K., Liu, Y., Chen, F. (2018). Effect of gamma irradiation on the physicochemical properties and nutrient contents of peanut. LWT-Food Science And Technology, 96, 535–542. https://doi.org/ 10.1016/j.lwt.2018.06.009
  • Mexis, S. F., Kontominas, M. G. (2009). Effect of gamma-irradiation on the physicochemical and sensory properties of cashew nuts (Anacardium occidentale L.). LWT-Food Science And Technology, 42(9), 1501–1507. https://doi.org/10.1016/ j.lwt.2009.03.023
  • Mir, S.A., Dar, B.N., Shah, M.A., Sofi, S.A., Hamdani, A.M., Oliveira, C.A.F., Hashemi Moosavi, M., Mousavi Khaneghah, A., Sant’Ana, A. S. (2021). Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food and Chemical Toxicology, 148(January), 111976. https://doi.org/10.1016/j.fct.2021.111976
  • Mohamed, N.F. El-Dine, R.S.S. Kotb, M.A.M. Saber, A. (2015). Assessing the possible effect of gamma irradiation on the reduction of aflatoxin B1, and on the moisture content in some cereal grains. American Journal of Biomedical Science and Research, 7, 33–39,
  • Oruç, H.H., Cengiz, M.İ., Kalkanli, O. (2006). Comparison of aflatoxin and fumonisin levels in maize grown in Turkey and imported from the USA. Animal Feed Science and Technology, 128, 337–341. https://api.semanticscholar.org/ CorpusID:85720537
  • Pitt, J.I. (2006). Fungal ecology and the occurrence of mycotoxins. Mycotoxins and phycotoxins. Advances in determination, toxicology and exposure management, Brill, 33– 41.
  • Probst, C., Bandyopadhyay R., Cotty, P. (2014). Diversity of aflatoxin-producing fungi and their impact on food safety in sub-Saharan Africa. International Journal of Food Microbiology, 174, 113-122. https://doi.org/10.1016/J. IJFOODMICRO.2013.12.010.
  • Reddy, K.R.N., Abbas, H.K., Abel, C.A., Shier, W.T., Oliveira, C.A.F., Raghavender, C.R. (2009). Mycotoxin contamination of commercially important agricultural commodities. Toxin Reviews, 28, 154-168.
  • Sanni, S.A., Adebowale, A.A., Olayiwola, I.O. (2008). Chemical composition and pasting properties of iron-fortified maize flour. Journal of Food, Agriculture and Environment, 6(3&4), 172-175.
  • Şengül, Ü., Yalçın, E., Şengül, B., Çavuşoğlu, K. (2016). Investigation of aflatoxin contamination in maize flour consumed in Giresun, Turkey. Quality Assurance and Safety of Crops & Foods, 8(3), 385–391. https://doi.org/10.3920/ QAS2015.0672
  • Sirisoontaralak, P., Noomhorm, A. (2007). Changes in physicochemical and sensory-properties of irradiated rice during storage. Journal of Stored Products Research, 43(3), 282–289. https://doi.org/https://doi.org/10.1016/j.jspr.2006.06.008
  • Slavova-kazakova, A., Taneva, S., Kamenova-Nacheva, M., Momchilova, S. (2025). Effects Of Gamma -Irradiation On Fatty Acids And Oxidative Stability Of Oil From Treated Walnuts . Impact Of Antioxidant Compositions On Oil Autoxidation. Bioorganic Chemistry, 78(1), 27–35.
  • Smita, M., Meera, K., Sundaramoorthy, H., Jha, D., Mohan, B. C., Pavithraa, G., Reddy, C. K. (2023). Influence of γ-irradiation on physicochemical, functional, proximate, and antioxidant characteristics of pigmented rice flours. Journal of Food Science and Technology, 60(5), 1621–1632. https://doi.org/10.1007/s13197-023-05709-z
  • Snedecor, G., Cochran, W. (1988). Statistical methods. Ames, Aiwa: The Iowa State University Press, pp. 221–221.
  • Spadaro, D., Garibaldi, A. (2017). Containment of mycotoxins in the food chain by using decontamination and detoxification techniques. In M. Gullino, J. Stack, J. Fletcher, & J. Mumford (Eds.), Practical tools for plant and food biosecurity (pp. 163e177). Cham: Springer International Publishing, https://doi.org/10.1007/ 978-3-319-46897-6_8.
  • Temba, M.C. Njobeh B.P., Kayitesi, E. (2017). Storage stability of maize- groundnut composite flours and an assessment of aflatoxin B1 and ochra- toxin A contamination in flours and porridges. Food Control, 71, 178-186.
  • Tralamazza, S.M., Bemvenuti, R.H., Zorzete, P. de Souza Garcia, F. Corrêa, B. (2016). Fungal diversity and natural occurrence of deoxynivalenol and zearalenone in freshly harvested wheat grains from Brazil. Food Chemistry, 196: 445-450. https://doi.org/ 10.1016/j.foodchem.2015.09.063
  • TÜİK (2024). https://data.tuik.gov.tr/Bulten/ Index?p=Bitkisel-Uretim-Istatistikleri-2023-49535. Erişim: 12.07.2024
  • Xiang, P., Zhang, Z., Le, W., Wei, Y., Li, B. (2025). Effect of thermal pretreatments on the quality attributes and irradiation markers of sesame oil extracted from sesame seeds without and with gamma irradiation. Food Chemistry, 463(June 2024). https://doi.org/10.1016/ j.foodchem.2024.141401

MISIR UNUNUN YAĞ ASİTLERİ BİLEŞİMİ VE FİZİKOKİMYASAL KALİTESİ ÜZERİNE GAMA IŞINLAMANIN ETKİSİ

Yıl 2025, Cilt: 50 Sayı: 2, 235 - 244
https://doi.org/10.15237/gida.GD25021

Öz

Mısır (Zea mays L.) dünya çapında en çok tüketilen tahıllar arasında olup önemli bir temel gıdadır. Mevcut çalışmada, gama ışınlamanın mısır ununun besin bileşimi, renk değerleri ve yağ asitleri kompozisyonuna etkileri araştırılmıştır. Mısır unu örnekleri 0, 2.5, 5.0, 7.5 ve 10 kGy dozlarında 60Co kaynağı kullanılarak ışınlanmıştır. Gama ışınları mısır unu yağının oleik asit (18:1) ve linoleik asit (18:2) seviyelerinde önemli bir azalmaya ve stearik asit (18:0) seviyesinde artışa neden olup yağ asitlerini modifiye etmiştir. Ayrıca ışınlama dozunun artmasına paralel olarak, toplam tekli doymamış ve toplam çoklu doymamış yağ asitlerinin azaldığı saptanmıştır. Çalışmada incelenen besin bileşimi kuru madde, protein, kül ve yağ bileşenleridir. Gama ışınlama mısır ununun kuru madde, yağ ve protein oranlarında istatistiksel açıdan önemli değişikliklere yol açmaz iken (P> 0.05), kül değeri ve renk parametrelerini istatistiksel olarak önemli (P< 0.05) düzeyde etkilemiştir. Işınlama ile L* değeri artarken, a* ve b* renk parametreleri ışınlama dozunun arttırılmasına bağlı azalmıştır.

Kaynakça

  • Afify, A., Rashed, M., Ebtesam, A. M., El-Beltagi, H. (2013). Effect of gamma radiation on the lipid profiles of soybean, peanut and sesame seed oils. Grasas y Aceites, 64(4), 356–368. https://doi.org/ 10.3989/gya.119712
  • Al-Bachir, M. (2015). Studies on the physicochemical characteristics of oil extracted from gamma irradiated pistachio (Pistacia vera L.). Food Chemistry, 167, 175–179. https://doi.org/10.1016/j.foodchem.2014.06.020
  • Alberts, J., Lilly, M., Rheeder, J., Burger, H., Shephard, G., Gelderblom, W. (2017). Technological and community-based methods to reduce mycotoxin exposure. Food Control, 73, 101-109, https://www.sciencedirect.com/science/ article/pii/ S0956713516302638
  • Algül, I., Kara, D. (2014). Determination and chemometric evaluation of total aflatoxin, aflatoxin B1, ochratoxin A and heavy metals content in corn flours from Turkey. Food Chemistry, 157, 70–76. https://doi.org/10.1016/ j.foodchem.2014.02.004
  • Anonim, (2025). Türk Gıda Kodeksi. Gıda Işınlama Yönetmeliği (2019/ 30907) https://www.resmigazete.gov.tr/eskiler/2019/10/20191003-1-1.pdf Erişim tarihi: 26.02.2025
  • AOAC, Official Methods of Analysis, 17th ed. Association of Official Analytical Chemists, Maryland, USA, 2000.
  • Apaydin, D., Demirci, A.S., Gecgel, U. (2017). Effect of Gamma Irradiation on Biochemical Properties of Grape Seeds. JAOCS, Journal of the American Oil Chemists’ Society, 94(1), 57–67. https://doi.org/10.1007/s11746-016-2917-3
  • Apaydın, D. (2024). Effect of gamma irradiation on the nutritional composition , phenolic compounds and fatty acids profiles in raw cocoa ( Theobroma cacao L .) beans. Journal of Food Measurement and Characterization, 5305(18), 5297–5305.
  • Aquino, S., Ferreira, F., Helena, D., Ribeiro, B., Corrêa, B., Greiner, R., Lucia, A., Haasis, C. (2005). Evaluation Of Viability Of Aspergillus flavus and Aflatoxins Degradation in Irradiated Samples of Maize. Medical Microbiology, 352–356.
  • Aziz, N.H., Moussa, L.A.A., Far, F.M.E. (2004). Reductıon Of Fungı And Mycotoxıns Formatıon In Seeds By Gamma-Radıatıon. Journal of Food Safety, 24(202), 109–127.
  • Barreira, J.C.M., Antonio, A.L., Günaydi, T., Alkan, H., Bento, A., Luisa Botelho, M., Ferreira, I. C.F.R. (2012). Chemometric characterization of gamma irradiated chestnuts from Turkey. Radiation Physics and Chemistry, 81(9), 1520–1524. https://doi.org/https://doi.org/10.1016/j.radphyschem.2012.01.005
  • Calado, T., Fernández-Cruz, M. L., Cabo Verde, S., Venâncio, A., Abrunhosa, L. (2018). Gamma irradiation effects on ochratoxin A: Degradation, cytotoxicity and application in food. Food Chemistry, 240(April 2017), 463–471. https://doi.org/10.1016/j.foodchem.2017.07.136
  • Darfour, B., Wilson, D. D., Ofosu, D. O., Ocloo, F. C. K. (2012). Physical, proximate, functional and pasting properties of flour produced from gamma irradiated cowpea (Vigna unguiculata, L. Walp). Radiation Physics and Chemistry, 81(4), 450–457. https://doi.org/https://doi.org/10.1016/ j.radphyschem.2011.12.015
  • Di Stefano, V., Pitonzo, R., Bartolotta, A., D’Oca, M. C., Fuochi, P. (2014). Effects of γ-irradiation on the α-tocopherol and fatty acids content of raw unpeeled almond kernels (Prunus dulcis). LWT-Food Science And Technology, 59(1), 572–576. https://doi.org/10.1016/j.lwt.2014.04.055
  • FAO (2019).Organisation for Economic Co-operation and Development/Food and Agriculture Organization of the United Nations, OECD-FAO agricultural outlook 2019-2028. Chapter 3, Cereals OECD Publishing/Rome: Food and Agriculture Organization of the United Nations, Paris. 2019, http://www.fao.org/3/ ca4076en/ca4076en.pdf.
  • Gecgel, U. (2013). Changes in some physicochemical properties and fatty acid composition of irradiated meatballs during storage. Journal Of Food Scıence And Technology-Mysore, 50(3), 505–513. https://doi.org/10.1007/ s13197-011-0375-3
  • Giray, B., Atasayar, S., Sahin, G. (2009). Determinatıon of ochratoxin A and total aflatoxin levels in corn samples from Turkey by enzyme-linked immunosorbent assay. Mycotoxin Research, 25(2), 113–116. https://doi.org/10.1007/ s12550-009-0016-0
  • Gutiérrez, L.F. Belkacemi, K. (2008). Palmitoleic Acid Enrichment of Seabuckthorn (Hippophaë rhamnoides L.) Pulp Oil by Crystallization Process. Separation Science and Technology, 43 (8), 2003–2022. https://doi.org/10.1080/ 01496390802064091.
  • James, A., Zikankuba, V.L. (2018). Mycotoxins contamination in maize alarms food safety in sub-Sahara Africa. Food Control, 90, 372–381. https://doi.org/10.1016/j.foodcont.2018.03.018
  • Jeong, S.G., Yang, J.E., Park, J.H., Ko, S.H., Choi, I.S., Kim, H.M., Chun, H.H., Kwon, M.J., Park, H.W. (2020). Gamma irradiation improves the microbiological safety and shelf-life of kimchi seasoning mixture. LWT-Food Science And Technology, 134. https://doi.org/10.1016/ j.lwt.2020.110144
  • Khalil, O.A.A., Hammad, A.A., Sebaei, A.S. (2021). Aspergillus flavus and Aspergillus ochraceus inhibition and reduction of aflatoxins and ochratoxin A in maize by irradiation. Toxicon, 198(January), 111–120. https://doi.org/10.1016/ j.toxicon.2021.04.029
  • Kos, J., Janić Hajnal, E., Malachová, A., Steiner, D., Stranska, M., Krska, R., Poschmaier, B., Sulyok, M. (2020). Mycotoxins in maize harvested in Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chemistry, 312(May 2019), 126034. https://doi.org/10.1016/j.foodchem.2019.126034
  • Kwon, J.H., Lee, J., Wajea, C., Ahn, J.J., Kim, G.R., Chung, H.W., et al. (2009). The quality of irradiated red ginseng powder following transport from Korea to the United States. Radiation Physics and Chemistry, 78, 643–646.
  • Le, W., Zhang, Z., Li, X., Peng-fei, X., Li, C. (2025). An investigation of the physicochemical properties and bioactive components of oil extracted from gamma-irradiated tiger nuts ( Cyperus esculentus L .). Journal of Food Measurement and Characterization, 19, 1313–1324.
  • Lee, N.Y., Kim, J.K. (2018). Effects of gamma radiation on the physicochemical properties of brown rice and changes in the quality of porridge. Radiation Physics and Chemistry, 152, 89–92. https://doi.org/10.1016/j.radphyschem.2018.07.021
  • Leite, M., Freitas, A., Silva, A. S., Barbosa, J., Ramos, F. (2020). Maize (Zea mays L.) and mycotoxins: A review on optimization and validation of analytical methods by liquid chromatography coupled to mass spectrometry. Trends in Food Science and Technology, 99(March), 542–565. https://doi.org/10.1016/ j.tifs.2020.03.023
  • Li, G., Zheng, X., Huang, D., Chen, X., Meng, F., Lin, M. (2019). Effect of 60Co γ-Irradiation on Physicochemical Properties of Adlay During Storage Period. International Journal of Food Engineering, 15(8), 20180329. https://doi.org/ 10.1515/ijfe-2018-0329.
  • Liu, K., Liu, Y., Chen, F. (2018). Effect of gamma irradiation on the physicochemical properties and nutrient contents of peanut. LWT-Food Science And Technology, 96, 535–542. https://doi.org/ 10.1016/j.lwt.2018.06.009
  • Mexis, S. F., Kontominas, M. G. (2009). Effect of gamma-irradiation on the physicochemical and sensory properties of cashew nuts (Anacardium occidentale L.). LWT-Food Science And Technology, 42(9), 1501–1507. https://doi.org/10.1016/ j.lwt.2009.03.023
  • Mir, S.A., Dar, B.N., Shah, M.A., Sofi, S.A., Hamdani, A.M., Oliveira, C.A.F., Hashemi Moosavi, M., Mousavi Khaneghah, A., Sant’Ana, A. S. (2021). Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food and Chemical Toxicology, 148(January), 111976. https://doi.org/10.1016/j.fct.2021.111976
  • Mohamed, N.F. El-Dine, R.S.S. Kotb, M.A.M. Saber, A. (2015). Assessing the possible effect of gamma irradiation on the reduction of aflatoxin B1, and on the moisture content in some cereal grains. American Journal of Biomedical Science and Research, 7, 33–39,
  • Oruç, H.H., Cengiz, M.İ., Kalkanli, O. (2006). Comparison of aflatoxin and fumonisin levels in maize grown in Turkey and imported from the USA. Animal Feed Science and Technology, 128, 337–341. https://api.semanticscholar.org/ CorpusID:85720537
  • Pitt, J.I. (2006). Fungal ecology and the occurrence of mycotoxins. Mycotoxins and phycotoxins. Advances in determination, toxicology and exposure management, Brill, 33– 41.
  • Probst, C., Bandyopadhyay R., Cotty, P. (2014). Diversity of aflatoxin-producing fungi and their impact on food safety in sub-Saharan Africa. International Journal of Food Microbiology, 174, 113-122. https://doi.org/10.1016/J. IJFOODMICRO.2013.12.010.
  • Reddy, K.R.N., Abbas, H.K., Abel, C.A., Shier, W.T., Oliveira, C.A.F., Raghavender, C.R. (2009). Mycotoxin contamination of commercially important agricultural commodities. Toxin Reviews, 28, 154-168.
  • Sanni, S.A., Adebowale, A.A., Olayiwola, I.O. (2008). Chemical composition and pasting properties of iron-fortified maize flour. Journal of Food, Agriculture and Environment, 6(3&4), 172-175.
  • Şengül, Ü., Yalçın, E., Şengül, B., Çavuşoğlu, K. (2016). Investigation of aflatoxin contamination in maize flour consumed in Giresun, Turkey. Quality Assurance and Safety of Crops & Foods, 8(3), 385–391. https://doi.org/10.3920/ QAS2015.0672
  • Sirisoontaralak, P., Noomhorm, A. (2007). Changes in physicochemical and sensory-properties of irradiated rice during storage. Journal of Stored Products Research, 43(3), 282–289. https://doi.org/https://doi.org/10.1016/j.jspr.2006.06.008
  • Slavova-kazakova, A., Taneva, S., Kamenova-Nacheva, M., Momchilova, S. (2025). Effects Of Gamma -Irradiation On Fatty Acids And Oxidative Stability Of Oil From Treated Walnuts . Impact Of Antioxidant Compositions On Oil Autoxidation. Bioorganic Chemistry, 78(1), 27–35.
  • Smita, M., Meera, K., Sundaramoorthy, H., Jha, D., Mohan, B. C., Pavithraa, G., Reddy, C. K. (2023). Influence of γ-irradiation on physicochemical, functional, proximate, and antioxidant characteristics of pigmented rice flours. Journal of Food Science and Technology, 60(5), 1621–1632. https://doi.org/10.1007/s13197-023-05709-z
  • Snedecor, G., Cochran, W. (1988). Statistical methods. Ames, Aiwa: The Iowa State University Press, pp. 221–221.
  • Spadaro, D., Garibaldi, A. (2017). Containment of mycotoxins in the food chain by using decontamination and detoxification techniques. In M. Gullino, J. Stack, J. Fletcher, & J. Mumford (Eds.), Practical tools for plant and food biosecurity (pp. 163e177). Cham: Springer International Publishing, https://doi.org/10.1007/ 978-3-319-46897-6_8.
  • Temba, M.C. Njobeh B.P., Kayitesi, E. (2017). Storage stability of maize- groundnut composite flours and an assessment of aflatoxin B1 and ochra- toxin A contamination in flours and porridges. Food Control, 71, 178-186.
  • Tralamazza, S.M., Bemvenuti, R.H., Zorzete, P. de Souza Garcia, F. Corrêa, B. (2016). Fungal diversity and natural occurrence of deoxynivalenol and zearalenone in freshly harvested wheat grains from Brazil. Food Chemistry, 196: 445-450. https://doi.org/ 10.1016/j.foodchem.2015.09.063
  • TÜİK (2024). https://data.tuik.gov.tr/Bulten/ Index?p=Bitkisel-Uretim-Istatistikleri-2023-49535. Erişim: 12.07.2024
  • Xiang, P., Zhang, Z., Le, W., Wei, Y., Li, B. (2025). Effect of thermal pretreatments on the quality attributes and irradiation markers of sesame oil extracted from sesame seeds without and with gamma irradiation. Food Chemistry, 463(June 2024). https://doi.org/10.1016/ j.foodchem.2024.141401
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Ambalajlama, Saklama ve İşleme
Bölüm Makaleler
Yazarlar

Demet Apaydın 0000-0002-7769-849X

Yayımlanma Tarihi
Gönderilme Tarihi 18 Ocak 2025
Kabul Tarihi 17 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 2

Kaynak Göster

APA Apaydın, D. (t.y.). MISIR UNUNUN YAĞ ASİTLERİ BİLEŞİMİ VE FİZİKOKİMYASAL KALİTESİ ÜZERİNE GAMA IŞINLAMANIN ETKİSİ. Gıda, 50(2), 235-244. https://doi.org/10.15237/gida.GD25021
AMA Apaydın D. MISIR UNUNUN YAĞ ASİTLERİ BİLEŞİMİ VE FİZİKOKİMYASAL KALİTESİ ÜZERİNE GAMA IŞINLAMANIN ETKİSİ. GIDA. 50(2):235-244. doi:10.15237/gida.GD25021
Chicago Apaydın, Demet. “MISIR UNUNUN YAĞ ASİTLERİ BİLEŞİMİ VE FİZİKOKİMYASAL KALİTESİ ÜZERİNE GAMA IŞINLAMANIN ETKİSİ”. Gıda 50, sy. 2 t.y.: 235-44. https://doi.org/10.15237/gida.GD25021.
EndNote Apaydın D MISIR UNUNUN YAĞ ASİTLERİ BİLEŞİMİ VE FİZİKOKİMYASAL KALİTESİ ÜZERİNE GAMA IŞINLAMANIN ETKİSİ. Gıda 50 2 235–244.
IEEE D. Apaydın, “MISIR UNUNUN YAĞ ASİTLERİ BİLEŞİMİ VE FİZİKOKİMYASAL KALİTESİ ÜZERİNE GAMA IŞINLAMANIN ETKİSİ”, GIDA, c. 50, sy. 2, ss. 235–244, doi: 10.15237/gida.GD25021.
ISNAD Apaydın, Demet. “MISIR UNUNUN YAĞ ASİTLERİ BİLEŞİMİ VE FİZİKOKİMYASAL KALİTESİ ÜZERİNE GAMA IŞINLAMANIN ETKİSİ”. Gıda 50/2 (t.y.), 235-244. https://doi.org/10.15237/gida.GD25021.
JAMA Apaydın D. MISIR UNUNUN YAĞ ASİTLERİ BİLEŞİMİ VE FİZİKOKİMYASAL KALİTESİ ÜZERİNE GAMA IŞINLAMANIN ETKİSİ. GIDA.;50:235–244.
MLA Apaydın, Demet. “MISIR UNUNUN YAĞ ASİTLERİ BİLEŞİMİ VE FİZİKOKİMYASAL KALİTESİ ÜZERİNE GAMA IŞINLAMANIN ETKİSİ”. Gıda, c. 50, sy. 2, ss. 235-44, doi:10.15237/gida.GD25021.
Vancouver Apaydın D. MISIR UNUNUN YAĞ ASİTLERİ BİLEŞİMİ VE FİZİKOKİMYASAL KALİTESİ ÜZERİNE GAMA IŞINLAMANIN ETKİSİ. GIDA. 50(2):235-44.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/