Araştırma Makalesi
BibTex RIS Kaynak Göster

BIST-100 fiyat dinamiğinin farklı GARCH ve SV modelleri ile tahmin edilmesi

Yıl 2024, , 179 - 190, 28.02.2024
https://doi.org/10.30855/gjeb.2024.10.1.011

Öz

Bu çalışma, BIST 100 endeksini kullanarak çeşitli GARCH ve stokastik volatilite (SV) modellerinin karşılaştırmalı analizini gerçekleştirmektedir. İncelenen modeller arasında geleneksel GARCH (1,1) modelleri ve AR (1) log-volatilite sürecine sahip SV modelleri bulunmaktadır. Ek olarak, sıçrama bileşeni, ortalama içinde volatilite, kaldıraç etkisi, t dağılımını veya hareketli ortalamayı takip eden yenilikleri içeren daha esnek modeller de çalışma kapsamında kullanılmıştır. Elde edilen ampirik bulgular özetle şu şekildedir: (1) SV modelleri, GARCH modelleri ile karşılaştırıldığında genellikle daha iyi performans göstermektedir. (2) Bir sıçrama bileşeninin ve bir t-dağılımı sonrasındaki yeniliklerin dahil edilmesi, standart GARCH modelinin performansını belirgin şekilde artırırken, SV modeli üzerinde daha az etkiye sahiptir. (3) Volatilite geri bildirim kanalının baz modele eklenmesi model performansında anlamlı bir iyileşmeye neden olmamıştır. (4) Baz modellere hareketli ortalama bileşeninin eklenmesi gerek GARCH modelinde gerekse de SV modelinde anlamlı bir iyileşme sağlamamıştır. (5) Kaldıraç etkisinin modele dahil edilmesi BIST 100 fiyat endeksinin tahmininde önemli iyileşme sağlamıştır. BIST 100 volatilite tahmininde en başarılı model SV-t modelidir.

Etik Beyan

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim. Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu bildiririm.

Kaynakça

  • Abiyev, V. (2015). Time-varying beta risk and its modeling techniques for Turkish industry portfolios. İktisat İşletme ve Finans, 30(352), 79-108. Doi: https://doi.org/10.3848/iif.2015.352.4370
  • Adesina, K. S. (2013). Modelling stock market return volatility: GARCH evidence from Nigerian stock exchange. International Journal of Financial Management, 3(3), 37-46.
  • Armağan, İ. Ü. (2023). BIST 100 endeks volatilitesinin koşullu değişen varyans modelleri ile incelenmesi. Türkiye Mesleki ve Sosyal Bilimler Dergisi, 11, 39-52. Doi: https://doi.org/10.46236/jovosst.1265004
  • Bollerslev, T. (1987). A Conditionally heteroskedastic time series model for speculative prices and rates of return. The Review of Economics and Statistics, 69(3), 542-547. Doi: https://doi.org/10.2307/1925546
  • Büberkökü, Ö. (2019). Asimetrik stokastik volatilite modelinin BIST100 endeksine uygulanması. Iğdır Üniversitesi Sosyal Bilimler Dergisi, 18, 503-527. Doi: https://doi.org/10.09.2018
  • Chan, J. C. C. (2013). Moving average stochastic volatility models with application to inflation forecast. Journal of Econometrics, 176(2), 162-172. Doi: https://doi.org/10.1016/j.jeconom.2013.05.003
  • Chan, J. C. C., ve Eisenstat, E. (2015). Marginal likelihood estimation with the cross-entropy method. Econometric Reviews, 34(3), 256-285. Doi: https://doi.org/10.1080/07474938.2014.944474
  • Chan, J. C. C., ve Grant, A. L. (2016). Modeling energy price dynamics: GARCH versus stochastic volatility. Energy Economics, 54, 182-189. Doi: https://doi.org/10.1016/j.eneco.2015.12.003
  • Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2), 223-236. Doi: https://doi.org/10.1080/713665670
  • Çelik, A. (2021). Volatility of BIST 100 returns after 2020, calendar anomalies and COVID-19 effect. BDDK Bankacılık ve Finansal Piyasalar Dergisi, 15(1), 61-81. Doi: https://doi.org/10.46520/bddkdergisi.986643
  • Dhamija, A. K. (2010). Financial time series forecasting: Comparison of various ARCH models. Global Journal of Finance and Management, 2(1), 159-172.
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987-1007. Doi: https://doi.org/10.2307/1912773
  • Glosten, L. R., Jagannathan, R., ve Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779-1801. Doi: https://doi.org/10.2307/2329067
  • Koopman, S. J., ve Hol Uspensky, E. (2002). The stochastic volatility in mean model: Empirical evidence from international stock markets. Journal of Applied Econometrics, 17(6), 667-689. Doi: https://doi.org/10.1002/jae.652
  • Kuzu, S. (2018). Borsa İstanbul Endeksi (BIST 100) getiri volatilitesinin ARCH ve GARCH modeli ile tahmin edilmesi. Muhasebe ve Vergi Uygulamaları Dergisi, 608-624. Doi: https://doi.org/10.29067/muvu.384418
  • Lim, C. M., ve Sek, S. K. (2013). Comparing the performances of GARCH-type models in capturing the stock market volatility in Malaysia. Procedia Economics and Finance, 5, 478-487. Doi: https://doi.org/10.1016/s2212-5671(13)00056-7
  • Lin, Z. (2018). Modelling and forecasting the stock market volatility of SSE composite index using GARCH models. Future Generation Computer Systems, 79, 960-972. Doi: https://doi.org/10.1016/j.future.2017.08.033
  • Liu, W., ve Morley, B. (2009). Volatility forecasting in the Hang Seng index using the GARCH approach. Asia-Pacific Financial Markets, 16(1), 51-63. Doi: https://doi.org/10.1007/s10690-009-9086-4
  • Ljung, G. M., ve Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2). Doi: https://doi.org/10.1093/biomet/65.2.297
  • Magnus, F. J., ve Eric Fosu, O.-A. (2006). Modelling and forecasting volatility of returns on the Ghana stock exchange using GARCH models. American Journal of Applied Sciences, 3(10). Doi: https://doi.org/10.3844/ajassp.2006.2042.2048
  • McLeod, A. I., ve Li, W. K. (1983). Diagnostic checking ARMA time series models using squared‐residual autocorrelations. Journal of Time Series Analysis, 4(4), 269-273. Doi: https://doi.org/10.1111/j.1467-9892.1983.tb00373.x
  • Ng, H. G., ve McAleer, M. (2004). Recursive modelling of symmetric and asymmetric volatility in the presence of extreme observations. International Journal of Forecasting, 20(1), 115-129. Doi: https://doi.org/10.1016/S0169-2070(03)00008-6
  • Nguyen, C. T., ve Nguyen, M. H. (2019). Modeling stock price volatility: Empirical evidence from the Ho Chi Minh City stock exchange in Vietnam. Journal of Asian Finance, Economics and Business, 6(3), 19-26. Doi: https://doi.org/10.13106/jafeb.2019.vol6.no3.19
  • Öner, S., ve Öner, H. (2023). Symmetric and asymmetric volatility: Forecasting the Borsa Istanbul 100 index return volatility. Financial Internet Quarterly, 19(1), 48-56. Doi: https://doi.org/10.2478/fiqf-2023-0005
  • Selçuk, F. (2005). Asymmetric stochastic volatility in emerging stock markets. Applied Financial Economics, 15(12), 867-874. Doi: https://doi.org/10.1080/09603100500077136
  • Singh, A. (2017). Modeling conditional volatility of Indian banking sector’s stock market returns. Scientific Annals of Economics and Business, 64(3), 325-338. Doi: https://doi.org/10.1515/saeb-2017-0021
  • Srinivasan, K. (2013). Modeling the symmetric and asymmetric volatility for select stock futures in India: Evidence from GARCH family models. Ushus JBMgt, 61-82. Doi: https://doi.org/10.12725/ujbm.22.4
  • Tamilselvan, M., ve Manjula, V. (2016). A study on conditional volatility on nifty evidence from national stock exchange -India. International Journal of Applied Business and Economic Research, 14(6).
  • Taylor, S. J. (1994). Modeling stochastic volatility: A review and comparative study. Mathematical Finance, 4(2), 183-204. Doi: https://doi.org/10.1111/j.1467-9965.1994.tb00057.x
  • Wei, Y., Wang, Y., ve Huang, D. (2010). Forecasting crude oil market volatility: Further evidence using GARCH-class models. Energy Economics, 32(6), 1477-1484. Doi: https://doi.org/10.1016/j.eneco.2010.07.009
  • Yalçın, Y. (2007). Stokastik oynaklık modeli ile İstanbul Menkul Kıymetler Borsası’nda kaldıraç etkisinin incelenmesi. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 22(2), 357-365.

Predicting BIST-100 price dynamics with different GARCH and SV models

Yıl 2024, , 179 - 190, 28.02.2024
https://doi.org/10.30855/gjeb.2024.10.1.011

Öz

This study performs a comparative analysis of various GARCH and stochastic volatility (SV) models using the BIST 100 index. The models we examine include traditional GARCH (1,1) models and SV models with an AR (1) log-volatility process. Additionally, we consider more flexible models that incorporate jump components, volatility-in-mean, leverage effects, and innovations following a t-distribution or a moving average. The empirical findings reveal the following findings: (1) Stochastic Volatility (SV) models generally demonstrate better performance when compared to their GARCH counterparts. (2) The inclusion of a jump component and innovations following a t-distribution notably enhances the performance of the standard GARCH model while having less impact on the SV model. (3) The presence of a volatility feedback channel appears to be unnecessary. (4) Adding a moving average component does not improve the goodness of fit for both the GARCH and SV models. (5) The leverage effect is found to be crucial in modeling the BIST 100 index. Overall, the SV-t model has the most favorable performance among other peer models.

Kaynakça

  • Abiyev, V. (2015). Time-varying beta risk and its modeling techniques for Turkish industry portfolios. İktisat İşletme ve Finans, 30(352), 79-108. Doi: https://doi.org/10.3848/iif.2015.352.4370
  • Adesina, K. S. (2013). Modelling stock market return volatility: GARCH evidence from Nigerian stock exchange. International Journal of Financial Management, 3(3), 37-46.
  • Armağan, İ. Ü. (2023). BIST 100 endeks volatilitesinin koşullu değişen varyans modelleri ile incelenmesi. Türkiye Mesleki ve Sosyal Bilimler Dergisi, 11, 39-52. Doi: https://doi.org/10.46236/jovosst.1265004
  • Bollerslev, T. (1987). A Conditionally heteroskedastic time series model for speculative prices and rates of return. The Review of Economics and Statistics, 69(3), 542-547. Doi: https://doi.org/10.2307/1925546
  • Büberkökü, Ö. (2019). Asimetrik stokastik volatilite modelinin BIST100 endeksine uygulanması. Iğdır Üniversitesi Sosyal Bilimler Dergisi, 18, 503-527. Doi: https://doi.org/10.09.2018
  • Chan, J. C. C. (2013). Moving average stochastic volatility models with application to inflation forecast. Journal of Econometrics, 176(2), 162-172. Doi: https://doi.org/10.1016/j.jeconom.2013.05.003
  • Chan, J. C. C., ve Eisenstat, E. (2015). Marginal likelihood estimation with the cross-entropy method. Econometric Reviews, 34(3), 256-285. Doi: https://doi.org/10.1080/07474938.2014.944474
  • Chan, J. C. C., ve Grant, A. L. (2016). Modeling energy price dynamics: GARCH versus stochastic volatility. Energy Economics, 54, 182-189. Doi: https://doi.org/10.1016/j.eneco.2015.12.003
  • Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2), 223-236. Doi: https://doi.org/10.1080/713665670
  • Çelik, A. (2021). Volatility of BIST 100 returns after 2020, calendar anomalies and COVID-19 effect. BDDK Bankacılık ve Finansal Piyasalar Dergisi, 15(1), 61-81. Doi: https://doi.org/10.46520/bddkdergisi.986643
  • Dhamija, A. K. (2010). Financial time series forecasting: Comparison of various ARCH models. Global Journal of Finance and Management, 2(1), 159-172.
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987-1007. Doi: https://doi.org/10.2307/1912773
  • Glosten, L. R., Jagannathan, R., ve Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779-1801. Doi: https://doi.org/10.2307/2329067
  • Koopman, S. J., ve Hol Uspensky, E. (2002). The stochastic volatility in mean model: Empirical evidence from international stock markets. Journal of Applied Econometrics, 17(6), 667-689. Doi: https://doi.org/10.1002/jae.652
  • Kuzu, S. (2018). Borsa İstanbul Endeksi (BIST 100) getiri volatilitesinin ARCH ve GARCH modeli ile tahmin edilmesi. Muhasebe ve Vergi Uygulamaları Dergisi, 608-624. Doi: https://doi.org/10.29067/muvu.384418
  • Lim, C. M., ve Sek, S. K. (2013). Comparing the performances of GARCH-type models in capturing the stock market volatility in Malaysia. Procedia Economics and Finance, 5, 478-487. Doi: https://doi.org/10.1016/s2212-5671(13)00056-7
  • Lin, Z. (2018). Modelling and forecasting the stock market volatility of SSE composite index using GARCH models. Future Generation Computer Systems, 79, 960-972. Doi: https://doi.org/10.1016/j.future.2017.08.033
  • Liu, W., ve Morley, B. (2009). Volatility forecasting in the Hang Seng index using the GARCH approach. Asia-Pacific Financial Markets, 16(1), 51-63. Doi: https://doi.org/10.1007/s10690-009-9086-4
  • Ljung, G. M., ve Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2). Doi: https://doi.org/10.1093/biomet/65.2.297
  • Magnus, F. J., ve Eric Fosu, O.-A. (2006). Modelling and forecasting volatility of returns on the Ghana stock exchange using GARCH models. American Journal of Applied Sciences, 3(10). Doi: https://doi.org/10.3844/ajassp.2006.2042.2048
  • McLeod, A. I., ve Li, W. K. (1983). Diagnostic checking ARMA time series models using squared‐residual autocorrelations. Journal of Time Series Analysis, 4(4), 269-273. Doi: https://doi.org/10.1111/j.1467-9892.1983.tb00373.x
  • Ng, H. G., ve McAleer, M. (2004). Recursive modelling of symmetric and asymmetric volatility in the presence of extreme observations. International Journal of Forecasting, 20(1), 115-129. Doi: https://doi.org/10.1016/S0169-2070(03)00008-6
  • Nguyen, C. T., ve Nguyen, M. H. (2019). Modeling stock price volatility: Empirical evidence from the Ho Chi Minh City stock exchange in Vietnam. Journal of Asian Finance, Economics and Business, 6(3), 19-26. Doi: https://doi.org/10.13106/jafeb.2019.vol6.no3.19
  • Öner, S., ve Öner, H. (2023). Symmetric and asymmetric volatility: Forecasting the Borsa Istanbul 100 index return volatility. Financial Internet Quarterly, 19(1), 48-56. Doi: https://doi.org/10.2478/fiqf-2023-0005
  • Selçuk, F. (2005). Asymmetric stochastic volatility in emerging stock markets. Applied Financial Economics, 15(12), 867-874. Doi: https://doi.org/10.1080/09603100500077136
  • Singh, A. (2017). Modeling conditional volatility of Indian banking sector’s stock market returns. Scientific Annals of Economics and Business, 64(3), 325-338. Doi: https://doi.org/10.1515/saeb-2017-0021
  • Srinivasan, K. (2013). Modeling the symmetric and asymmetric volatility for select stock futures in India: Evidence from GARCH family models. Ushus JBMgt, 61-82. Doi: https://doi.org/10.12725/ujbm.22.4
  • Tamilselvan, M., ve Manjula, V. (2016). A study on conditional volatility on nifty evidence from national stock exchange -India. International Journal of Applied Business and Economic Research, 14(6).
  • Taylor, S. J. (1994). Modeling stochastic volatility: A review and comparative study. Mathematical Finance, 4(2), 183-204. Doi: https://doi.org/10.1111/j.1467-9965.1994.tb00057.x
  • Wei, Y., Wang, Y., ve Huang, D. (2010). Forecasting crude oil market volatility: Further evidence using GARCH-class models. Energy Economics, 32(6), 1477-1484. Doi: https://doi.org/10.1016/j.eneco.2010.07.009
  • Yalçın, Y. (2007). Stokastik oynaklık modeli ile İstanbul Menkul Kıymetler Borsası’nda kaldıraç etkisinin incelenmesi. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 22(2), 357-365.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Zaman Serileri Analizi, Finans
Bölüm Makaleler
Yazarlar

Hüseyin Özdemir 0000-0003-4242-8999

Erken Görünüm Tarihi 28 Şubat 2024
Yayımlanma Tarihi 28 Şubat 2024
Gönderilme Tarihi 25 Aralık 2023
Kabul Tarihi 14 Şubat 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Özdemir, H. (2024). BIST-100 fiyat dinamiğinin farklı GARCH ve SV modelleri ile tahmin edilmesi. Gazi İktisat Ve İşletme Dergisi, 10(1), 179-190. https://doi.org/10.30855/gjeb.2024.10.1.011
22273
Gazi İktisat ve İşletme Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.