BibTex RIS Kaynak Göster

A generalization of the extended Jacobi polynomials in two variables

Yıl 2015, Cilt: 28 Sayı: 3, 503 - 521, 05.10.2015

Öz

Kaynakça

  • Aktaş, R. "A note on multivariable Humbert matrix polynomials", Gazi University Journal of Science, 27 (2): 747-754, (2014).
  • Aktaş, R. and Altın, A., "A class of multivariable polynomials associated with Humbert Polynomials", Hacettepe Journal of Mathematics and Statistics, 42 (4): 359-372, (2013).
  • Aktaş, R., Altın, A. and Taşdelen, F., "A note on a family of two-variable polynomials", Journal of Computational and Applied Mathematics, 235: 4825- 4833, (2011).
  • Aktaş, R. and Erkuş-Duman, E., "The Laguerre polynomials
  • Slovaca, 63(3): 531-544, (2013). variables",
  • Mathematica [5] Aktaş, R. and Erkuş-Duman, E., "On a family of multivariate modified Humbert polynomials", The Scientific World Journal, 2013: 1-12, (2013).
  • Altın, A., Aktaş, R. and Erkuş-Duman, E. "On a multivariable extension for the extended Jacobi polynomials", J. Math. Anal. Appl. 353: 121-133, (2009).
  • Altın, A. and Erkuş, E., "On a multivariable extension of
  • Transform. Spec. Funct. 17: 239-244, (2006). polynomials",
  • Integral [8] Appell, P. and Kampé de Fériet, J., "Fonctions Hypergéométriques et Hyperspériques: Polynomes d'Hermite". Gauthier-Villars, Paris, (1926).
  • Bailey, W. N. , "Generalized Hypergeometric Series", Cambridge Math. Tract No. 32, Cambridge Univ. Press, Cambridge, (1935).
  • Carlitz, L., "An integral for the product of two Laguerre polynomials", Boll. Un. Mat. Ital. (3), 17 : 25- 28, (1962).
  • Dunkl, C.F., and Xu, Y., "Orthogonal polynomials of several variables", Cambridge Univ. press, New York, (2001).
  • Erkuş-Duman, E., Altın, A. and Aktaş, R., "Miscellaneous properties of some multivariable
  • polynomials", Mathematical and Computer Modelling, 54: 1875-1885, (2011).
  • Fujiwara, I., "A unified presentation of classical orthogonal polynomials", Math. Japon. 11: 133-148, (1966).
  • Koornwinder, T.H. , "Two variable analogues of the classical orthogonal polynomials. Theory and application of special functions", Acad. Press. Inc., New York, (1975).
  • Malave, P.B. and Bhonsle, B.R. , "Some recurrence relations and differential formulae for two-variable orthogonal polynomials 2
  • orthogonal over the unit disk", Ranchi Uni. Math. Jour. 9 : 45-52, (1978). P x, y
  • n,kx, y which are [16] Malave, P.B. and Bhonsle, B.R. , "Some recurrence relations and differential formulae for two variable orthogonal polynomials 2
  • orthogonal over the unit disk-I", Jour. Ind. Acad. Maths. 2: 31-35, (1980). P x, y
  • n,kx, y which are [17] Malave, P.B. and Bhonsle, B.R. , "Some generating functions of two variable analogue of Jacobi polynomials of class II", Ganita, 31 (1) : 29-37, (1980).
  • Rainville, E. D.,"Special Functions", The Macmillan Company, New York, (1960).
  • Singhal, B. M., "Integral representation for the product of two polynomials", Vijnana Parishad Anusandhan Patrica, 17: 165-169, (1974).
  • Suetin, P. K., "Orthogonal polynomials in two variables", Gordon and Breach Science Publishers, Moscow, (1988).
  • Szegö, G., "Orthogonal polynomials", Vol. 23, Amer. Math. Soc. Colloq. Publ., 4th ed., (1975).
  • Srivastava, H. M. and Manocha, H. L., "A Treatise on Generating Functions", Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, (1984).
Yıl 2015, Cilt: 28 Sayı: 3, 503 - 521, 05.10.2015

Öz

Kaynakça

  • Aktaş, R. "A note on multivariable Humbert matrix polynomials", Gazi University Journal of Science, 27 (2): 747-754, (2014).
  • Aktaş, R. and Altın, A., "A class of multivariable polynomials associated with Humbert Polynomials", Hacettepe Journal of Mathematics and Statistics, 42 (4): 359-372, (2013).
  • Aktaş, R., Altın, A. and Taşdelen, F., "A note on a family of two-variable polynomials", Journal of Computational and Applied Mathematics, 235: 4825- 4833, (2011).
  • Aktaş, R. and Erkuş-Duman, E., "The Laguerre polynomials
  • Slovaca, 63(3): 531-544, (2013). variables",
  • Mathematica [5] Aktaş, R. and Erkuş-Duman, E., "On a family of multivariate modified Humbert polynomials", The Scientific World Journal, 2013: 1-12, (2013).
  • Altın, A., Aktaş, R. and Erkuş-Duman, E. "On a multivariable extension for the extended Jacobi polynomials", J. Math. Anal. Appl. 353: 121-133, (2009).
  • Altın, A. and Erkuş, E., "On a multivariable extension of
  • Transform. Spec. Funct. 17: 239-244, (2006). polynomials",
  • Integral [8] Appell, P. and Kampé de Fériet, J., "Fonctions Hypergéométriques et Hyperspériques: Polynomes d'Hermite". Gauthier-Villars, Paris, (1926).
  • Bailey, W. N. , "Generalized Hypergeometric Series", Cambridge Math. Tract No. 32, Cambridge Univ. Press, Cambridge, (1935).
  • Carlitz, L., "An integral for the product of two Laguerre polynomials", Boll. Un. Mat. Ital. (3), 17 : 25- 28, (1962).
  • Dunkl, C.F., and Xu, Y., "Orthogonal polynomials of several variables", Cambridge Univ. press, New York, (2001).
  • Erkuş-Duman, E., Altın, A. and Aktaş, R., "Miscellaneous properties of some multivariable
  • polynomials", Mathematical and Computer Modelling, 54: 1875-1885, (2011).
  • Fujiwara, I., "A unified presentation of classical orthogonal polynomials", Math. Japon. 11: 133-148, (1966).
  • Koornwinder, T.H. , "Two variable analogues of the classical orthogonal polynomials. Theory and application of special functions", Acad. Press. Inc., New York, (1975).
  • Malave, P.B. and Bhonsle, B.R. , "Some recurrence relations and differential formulae for two-variable orthogonal polynomials 2
  • orthogonal over the unit disk", Ranchi Uni. Math. Jour. 9 : 45-52, (1978). P x, y
  • n,kx, y which are [16] Malave, P.B. and Bhonsle, B.R. , "Some recurrence relations and differential formulae for two variable orthogonal polynomials 2
  • orthogonal over the unit disk-I", Jour. Ind. Acad. Maths. 2: 31-35, (1980). P x, y
  • n,kx, y which are [17] Malave, P.B. and Bhonsle, B.R. , "Some generating functions of two variable analogue of Jacobi polynomials of class II", Ganita, 31 (1) : 29-37, (1980).
  • Rainville, E. D.,"Special Functions", The Macmillan Company, New York, (1960).
  • Singhal, B. M., "Integral representation for the product of two polynomials", Vijnana Parishad Anusandhan Patrica, 17: 165-169, (1974).
  • Suetin, P. K., "Orthogonal polynomials in two variables", Gordon and Breach Science Publishers, Moscow, (1988).
  • Szegö, G., "Orthogonal polynomials", Vol. 23, Amer. Math. Soc. Colloq. Publ., 4th ed., (1975).
  • Srivastava, H. M. and Manocha, H. L., "A Treatise on Generating Functions", Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, (1984).
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Mathematics
Yazarlar

Rabia Aktaş

Esra Erkuş Duman

Yayımlanma Tarihi 5 Ekim 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 28 Sayı: 3

Kaynak Göster

APA Aktaş, R., & Erkuş Duman, E. (2015). A generalization of the extended Jacobi polynomials in two variables. Gazi University Journal of Science, 28(3), 503-521.
AMA Aktaş R, Erkuş Duman E. A generalization of the extended Jacobi polynomials in two variables. Gazi University Journal of Science. Ekim 2015;28(3):503-521.
Chicago Aktaş, Rabia, ve Esra Erkuş Duman. “A Generalization of the Extended Jacobi Polynomials in Two Variables”. Gazi University Journal of Science 28, sy. 3 (Ekim 2015): 503-21.
EndNote Aktaş R, Erkuş Duman E (01 Ekim 2015) A generalization of the extended Jacobi polynomials in two variables. Gazi University Journal of Science 28 3 503–521.
IEEE R. Aktaş ve E. Erkuş Duman, “A generalization of the extended Jacobi polynomials in two variables”, Gazi University Journal of Science, c. 28, sy. 3, ss. 503–521, 2015.
ISNAD Aktaş, Rabia - Erkuş Duman, Esra. “A Generalization of the Extended Jacobi Polynomials in Two Variables”. Gazi University Journal of Science 28/3 (Ekim 2015), 503-521.
JAMA Aktaş R, Erkuş Duman E. A generalization of the extended Jacobi polynomials in two variables. Gazi University Journal of Science. 2015;28:503–521.
MLA Aktaş, Rabia ve Esra Erkuş Duman. “A Generalization of the Extended Jacobi Polynomials in Two Variables”. Gazi University Journal of Science, c. 28, sy. 3, 2015, ss. 503-21.
Vancouver Aktaş R, Erkuş Duman E. A generalization of the extended Jacobi polynomials in two variables. Gazi University Journal of Science. 2015;28(3):503-21.