Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination the effect of osmotic dehydration pretreatment under vacuum condition on mass change, drying kinetics and physicochemical properties of red beet

Yıl 2023, Cilt: 27 Sayı: 4, 515 - 530, 27.12.2023
https://doi.org/10.29050/harranziraat.1301013

Öz

Determining the effect of using osmotic dehydration (OD) and vacuum impregnation (VI) applications together as a pretreatment on mass transfer, drying kinetics and quality properties of red beet was aimed. For this, OD treatment was applied to samples in 40% and 60% sucrose solutions. The OD process was carried out for a total of 180 minutes, with (OD-VI) or without vacuum during the first 20 minutes. Pre-treated and untreated samples were convectively dried at 60 oC at an air velocity of 1 m s-1. The OD process caused a significant increase in water loss and thus in weight reduction. However, the solid gain increased significantly with the OD-VI application. While 390 minutes of drying time was required for the moisture content to fall below 8%, this duration was shortened by 180 minutes with the OD-VI application. To describe the drying behavior of red beet, 8 semi-theoretical models were applied. Page model (R2>0.997, RMSE<0.018 and χ2<0.431x10-3) had the best fit to the experimental data of pretreated beet slices. For the control sample, Diffusion Approach model (R2 =0.998, RMSE=0.013 and χ2=0.183x10-3) was more suitable. The lowest shrinkage rate (56.98%) was found in the sample dehydrated in 60% sucrose solution under vacuum in accordance with the drying kinetics data. The highest total phenolic content (3.39 mg GAE g-1) and antioxidant activity (36.43%) were also detected in the same sample. According to the color measurements, it was understood that the OD-VI pretreatment could be used to preserve the natural red color of red beet.

Kaynakça

  • Ahmad, F., & Zaidi, S. (2020). Osmotic Dehydration and Ultrasound Assisted Osmotic Dehydration of Fruits and Vegetables: A Review. International Journal of Tropical Agriculture, 38(4), 417-421.
  • An, K., Li, H., Zhao, D., Ding, S., Tao, H., & Wang, Z. (2013). Effect of Osmotic Dehydration with Pulsed Vacuum on Hot-Air Drying Kinetics and Quality Attributes of Cherry Tomatoes. Drying Technology, 31(6), 698-706. doi:10.1080/07373937.2012.755192
  • An, K., Tang, D., Wu, J., Fu, M., Wen, J., Xiao, G., & Xu, Y. (2019). Comparison of pulsed vacuum and ultrasound osmotic dehydration on drying of Chinese ginger (Zingiber officinale Roscoe): Drying characteristics, antioxidant capacity, and volatile profiles. Food Sci Nutr, 7(8), 2537-2545. doi:10.1002/fsn3.1103
  • Aydos, M., & ErtaŞ, N. (2023). Fonksiyonel bisküvi üretiminde farklı yöntemlerle kurutulmuş muşmula (Mespilus germanica) meyve tozu kullanımı. Harran Tarım ve Gıda Bilimleri Dergisi, 27(1), 113-124. doi:10.29050/harranziraat.1177638
  • Bozkir, H., & Ergün, A. R. (2020). Effect of sonication and osmotic dehydration applications on the hot air drying kinetics and quality of persimmon. Lwt, 131, 109704. doi:10.1016/j.lwt.2020.109704
  • Calderón-Chiu, C., Martínez-Sánchez, C. E., Rodríguez-Miranda, J., Juárez-Barrientos, J. M., Carmona-García, R., & Herman-Lara, E. (2019). Evaluation of the combined effect of osmotic and Refractance Window drying on the drying kinetics, physical, and phytochemical properties of beet. Drying Technology, 38(12), 1663-1675. doi:10.1080/07373937.2019.1655439
  • Carvalho, G. R., Rojas, M. L., Silveira, I., & Augusto, P. E. D. (2020). Drying Accelerators to Enhance Processing and Properties: Ethanol, Isopropanol, Acetone and Acetic Acid as Pre-treatments to Convective Drying of Pumpkin. Food and Bioprocess Technology, 13(11), 1984-1996. doi:10.1007/s11947-020-02542-6
  • Ceclu, L., Berbec (Ctrchelan), A., Nistor, O.-V., & LudmilaRudi. (2016). Effect of drying conditions on the physical properties of red beetroot samples. Paper presented at the International Scientific Conference on Microbial Biotechnology (3rd edition), Moldova.
  • Ciurzynska, A., Falacinska, J., Kowalska, H., Kowalska, J., Galus, S., Marzec, A., & Domian, E. (2021). The Effect of Pre-Treatment (Blanching, Ultrasound and Freezing) on Quality of Freeze-Dried Red Beets. Foods, 10(1). doi:10.3390/foods10010132
  • de Freitas, L. D. C., Brandao, S. C. R., Fernandes da Silva, J. H., Sa da Rocha, O. R., & Azoubel, P. M. (2021). Effect of Ethanol and Ultrasound Pretreatments on Pineapple Convective Drying. Food Technol Biotechnol, 59(2), 209-215. doi:10.17113/ftb.59.02.21.7045
  • Elhussein, E. A. A., & Şahin, S. (2018). Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods. Heat and Mass Transfer, 54, 1901-1911. doi:https://doi.org/10.1007/s00231-018-2278-6
  • Fotiou, D., Argyropoulos, K., Kolompourda, P., & Goula, A. M. (2023). Valorization of peach peels: preservation with an optimized drying process based on ultrasounds pretreatment with ethanol. Biomass Conversion and Biorefinery. doi:10.1007/s13399-023-03753-5
  • Garcia-Noguera, J., Oliveira, F. I. P., Gallão, M. I., Weller, C. L., Rodrigues, S., & Fernandes, F. A. N. (2010). Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technology, 28(2), 294-303. doi:10.1080/07373930903530402
  • Günel, Z. (2022). Enrichment of potato slices with vitamins C and D by vacuum impregnation. Food and Health, 8(3), 181-192. doi:10.3153/fh22018
  • Hamid, M. G., & Mohamed Nour, A. A. A. (2018). Effect of different drying methods on quality attributes of beetroot (Beta vulgaris) slices. World Journal of Science, Technology and Sustainable Development, 15(3), 287-298. doi:10.1108/wjstsd-11-2017-0043
  • Hashemi, S. M. B., & Jafarpour, D. (2021). Antimicrobial and antioxidant properties of Saturn peach subjected to ultrasound-assisted osmotic dehydration. Journal of Food Measurement and Characterization, 15(3), 2516-2523. doi:10.1007/s11694-021-00842-9
  • Horuz, E., & Maskan, M. (2013). Hot air and microwave drying of pomegranate (Punica granatum L.) arils. Journal of Food Science and Technology, 52(1), 285-293. doi:10.1007/s13197-013-1032-9
  • Hosseinzadeh Samani, B., Khodadadi, A., Rostami, S., & Lorigooini, Z. (2021). Investigation and optimization of the effect of osmotic‐ultrasound drying pretreatment on qualitative properties and process energy consumption of Cornus mas. Journal of Food Processing and Preservation, 45(5). doi:10.1111/jfpp.15377
  • İlter, I., Akyıl, S., Devseren, E., Okut, D., Koç, M., & Kaymak Ertekin, F. (2018). Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat and Mass Transfer, 54(7), 2101-2112. doi:10.1007/s00231-018-2294-6
  • Janowicz, M., Ciurzynska, A., & Lenart, A. (2021). Effect of Osmotic Pretreatment Combined with Vacuum Impregnation or High Pressure on the Water Diffusion Coefficients of Convection Drying: Case Study on Apples. Foods, 10(11). doi:10.3390/foods10112605
  • Junqueira, J. R. d. J., CorrÊA, J. L. G., MendonÇA, K. S. d., Mello Junior, R. E. d., & Souza, A. U. (2021). Modeling mass transfer during osmotic dehydration of different vegetable structures under vacuum conditions. Food Science and Technology, 41(2), 439-448. doi:10.1590/fst.02420
  • Karaboğa, Z., & Yildirim, A. (2022). Change in some physical characteristics of ultrasound pre-treated corn during hot-air convection and vacuum drying. Harran Tarım ve Gıda Bilimleri Dergisi, 26(1), 118-132. doi:10.29050/harranziraat.1036363
  • Kırbaş, İ., Tuncer, A. D., Şirin, C., & Usta, H. (2019). Modeling and developing a smart interface for various drying methods of pomelo fruit (Citrus maxima) peel using machine learning approaches. Computers and Electronics in Agriculture, 165, 104928. doi:https://doi.org/10.1016/j.compag.2019.104928
  • Kowalski, S. J., & Łechtańska, J. M. (2015). Drying of red beetroot after osmotic pretreatment: Kinetics and quality considerations. Chemical and Process Engineering, 36(3), 345-354. doi:10.1515/cpe-2015-0024
  • Le, D., & Konsue, N. (2021). Mass Transfer Behavior During Osmotic Dehydration and Vacuum Impregnation of “Phulae” Pineapple and the Effects on Dried Fruit Quality. Current Research in Nutrition and Food Science Journal, 9(1), 308-319. doi:10.12944/crnfsj.9.1.29
  • Li, Y., Wang, X., Wu, Z., Wan, N., & Ming, Y. (2020). Dehydration of hawthorn fruit juices using ultrasound-assisted vacuum drying. Ultrasonics Sonochemistry, 68. doi:https://doi.org/10.1016/j.ultsonch.2020.105219
  • Macedo, L. L., Corrêa, J. L. G., da Silva Araújo, C., & Vimercati, W. C. (2022). Effect of osmotic agent and vacuum application on mass exchange and qualitative parameters of osmotically dehydrated strawberries. Journal of Food Processing and Preservation, 46(7). doi:10.1111/jfpp.16621
  • Mina, Z. P., Kaseke, T., Fadiji, T., & Fawole, O. A. (2022). Effect of gum Arabic and ethanol pretreatments on drying kinetics and quality attributes of dried carrot slices. Heliyon, 8(12). doi:10.1016/j.heliyon.2022.e12037
  • Mocanu, G.-D. N., Oana-Viorela , Andronoiu, D. G., Ceclu, L., GheoneaIonica, I. D. M., Liliana, Barbu, V. V., & Constantin, O. E. P., Livia (2020). Effects of drying methods on quality parameters of potato and red beetroot purée with Lactobacillus delbrueckii. Journal of Food and Nutrition Research, 29(1), 23-34.
  • Mokhtarian, M., Heydari Majd, M., Koushki, F., Bakhshabadi, H., Daraei Garmakhany, A., & Rashidzadeh, S. (2014). Optimisation of pumpkin mass transfer kinetic during osmotic dehydration using artificial neural network and response surface methodology modelling. Quality Assurance and Safety of Crops & Foods, 6(2), 201-214. doi:10.3920/qas2012.0121
  • Nistor, O. V., Seremet Ceclu, L., Andronoiu, D. G., Rudi, L., & Botez, E. (2017). Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var. Cylindra). Food Chem, 236, 59-67. doi:10.1016/j.foodchem.2017.04.129
  • Nowacka, M., Dadan, M., & Tylewicz, U. (2021). Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. Applied Sciences, 11(3). doi:10.3390/app11031269
  • Petruț, G., Pop, A., Muste, S., Păucean, A., Vlad, M., Man, S., . . . Mureșan, A. (2018). Impact of thermal treatment on bioactive compounds of red beet (Beta vulgaris L.) preparations by hot air drying. Journal of Agroalimentary Processes and Technologies 2018, 24(4), 258-262.
  • Prithani, R., & Dash, K. K. (2020). Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innovative Food Science & Emerging Technologies, 64. doi:10.1016/j.ifset.2020.102407
  • Rahaman, A., Zeng, X. A., Kumari, A., Rafiq, M., Sideeg, A., Manzoor, M. F., . . . Ahmed, Z. (2019). Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrason Sonochem, 58, 104643. doi:10.1016/j.ultsonch.2019.104643
  • Richter Reis, F., Marques, C., Moraes, A. C. S. d., & Masson, M. L. (2022). Trends in quality assessment and drying methods used for fruits and vegetables. Food Control, 142. doi:10.1016/j.foodcont.2022.109254
  • Rodrigues, S., Oliveira, F. I. P., Gallão, M. I., & Fernandes, F. A. N. (2009). Effect of Immersion Time in Osmosis and Ultrasound on Papaya Cell Structure during Dehydration. Drying Technology, 27(2), 220-225. doi:10.1080/07373930802605883
  • Rojas, M. L., & Augusto, P. E. D. (2018). Ethanol and ultrasound pre-treatments to improve infrared drying of potato slices. Innovative Food Science & Emerging Technologies, 49, 65-75. doi:10.1016/j.ifset.2018.08.005
  • Şahin, U., & Öztürk, H. K. (2016). Effects of pulsed vacuum osmotic dehydration (PVOD) on drying kinetics of figs (Ficus carica L). Innovative Food Science & Emerging Technologies, 36, 104-111. doi:10.1016/j.ifset.2016.06.003
  • Santos, N. C., Almeida, R. L. J., da Silva, G. M., de Alcantara Silva, V. M., de Alcantara Ribeiro, V. H., de Oliveira Brito, A. C., . . . Saraiva, M. M. T. (2023). Impact of pretreatments with ethanol and freezing on drying slice papaya: drying performance and kinetic of ultrasound-assisted extraction of phenolics compounds. J Sci Food Agric, 103(1), 125-134. doi:10.1002/jsfa.12119
  • Santos, N. C., Almeida, R. L. J., Monteiro, S. S., Silva, E. T. d. V., Silva, V. M. d. A., André, A. M. M. C. N., . . . Brito, A. C. O. d. (2022). Influence of ethanol and ultrasound on drying, bioactive compounds, and antioxidant activity of strawberries (Fragaria × ananassa). Journal of the Indian Chemical Society, 99(7). doi:10.1016/j.jics.2022.100542
  • Seremet Ceclu, L., Nistor, O. V., Andronoiu, D. G., Mocanu, G. D., Barbu, V. V., Maidan, A., . . . Botez, E. (2020). Development of several hybrid drying methods used to obtain red beetroot powder. Food Chem, 310, 125637. doi:10.1016/j.foodchem.2019.125637
  • Sharma, M., & Dash, K. K. (2019). Effect of ultrasonic vacuum pretreatment on mass transfer kinetics during osmotic dehydration of black jamun fruit. Ultrason Sonochem, 58, 104693. doi:10.1016/j.ultsonch.2019.104693
  • Simpson, R., Ramírez, C., Nuñez, H., Jaques, A., & Almonacid, S. (2017). Understanding the success of Page's model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends in Food Science & Technology, 62, 194-201. doi:10.1016/j.tifs.2017.01.003
  • Singh, R. P., Chidambara Murthy, K. N., & Jayaprakasha, G. K. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50(1), 81-86.
  • Tekin, Z. H., & Baslar, M. (2018). The effect of ultrasound-assisted vacuum drying on the drying rate and quality of red peppers. Journal of Thermal Analysis and Calorimetry, 132(2), 1131-1143. doi:10.1007/s10973-018-6991-7
  • Wang, X., Feng, Y., Zhou, C., Sun, Y., Wu, B., Yagoub, A. E. A., & Aboagarib, E. A. A. (2019). Effect of vacuum and ethanol pretreatment on infrared-hot air drying of scallion (Allium fistulosum). Food Chem, 295, 432-440. doi:10.1016/j.foodchem.2019.05.145
  • Wang, X., Kahraman, O., & Feng, H. (2022). Impact of Osmotic Dehydration With/Without Vacuum Pretreatment on Apple Slices Fortified With Hypertonic Fruit Juices. Food and Bioprocess Technology, 15(7), 1588-1602. doi:10.1007/s11947-022-02834-z
  • Wu, X., Zhao, Y., Shi, Q., Liu, J., & Fang, Z. (2023). Effects of ethanol pretreatment on drying kinetics and quality attributes of scallop adductors during heat pump drying. Drying Technology, 1-18. doi:10.1080/07373937.2023.2166059
  • Yun, S.-M., Kang, M., Park, S. Y., Eun, J.-B., & Chun, H. H. (2023). Combined Pre-treatment of Freeze–Thaw and Ultrasonic-Assisted Aqueous Ethanol for Hot Air Drying of Watery Kimchi Cabbage Waste: Effects on Drying Efficiency, Physicochemical and Microbiological Characteristics, and Microstructure. Waste and Biomass Valorization. doi:10.1007/s12649-023-02077-9
  • Zhu, A., & Shen, X. (2014). The model and mass transfer characteristics of convection drying of peach slices. International Journal of Heat and Mass Transfer, 72, 345-351. doi:10.1016/j.ijheatmasstransfer.2014.01.001

Vakum ortamında ozmotik dehidrasyon ön işleminin kırmızı pancarın kütle değişimi, kurutma kinetiği ve fizikokimyasal özellikleri üzerine etkisinin belirlenmesi

Yıl 2023, Cilt: 27 Sayı: 4, 515 - 530, 27.12.2023
https://doi.org/10.29050/harranziraat.1301013

Öz

Bu çalışmada ön işlem olarak ozmotik dehidrasyon (OD) ve vakum emdirme (VE) uygulamalarının birlikte kullanılmasının kırmızı pancarda kütle transferi, kurutma kinetiği ve kalite özellikleri üzerine etkisinin belirlenmesi amaçlanmıştır. Bu amaçla dilimler halinde pancara %40 ve %60 sükroz çözeltisinde OD işlemi uygulanmıştır. OD işlemi ilk 20 dakika boyunca vakumlu (OD-VE) veya vakum uygulamasız olarak toplam 180 dakika boyunca gerçekleştirilmiştir. OD ön işlemi uygulanmayan örnek kontrol örneği olarak değerlendirilmiştir. Ön işlem uygulanmış ve uygulanmamış örnekler 60 oC sıcaklıkta 1 m s-1 hava hızında konvektif olarak kurutulmuştur. OD işlemi su kaybı (SK) ve dolayısıyla ağırlık kaybının (AK) önemli düzeyde artmasına neden olmuştur. Bununla birlikte katı madde kazanımı (KK), OD-VE uygulaması ile önemli düzeyde artmıştır. Kontrol örneğinde nem içeriğinin %8’in altına inmesi için 390 dakika kurutma süresi gerekli iken OD-VE uygulaması ile bu süre 180 dakika kısalmıştır. Pancarın kurutma davranışını tanımlamak için 8 farklı yarı teorik matematiksel model uygulanmış ve Page modelinin (R2>0.997, RMSE<0.018 ve χ2<0.431x10-3) OD ve OD-VE ön işlemi uygulanan pancar dilimlerinin deneysel verilerine en iyi şekilde uyduğu, kontrol örneğinde ise Diffusion Approach modelinin daha uygun (R2 =0.998, RMSE=0.013 ve χ2=0.183x10-3) olduğu saptanmıştır. Çalışmamızda en düşük büzülme oranı (%56.98) kurutma kinetiği verileri ile uyumlu olarak vakum altında %60 sükroz çözeltisinde dehidre edilen örnekte saptanmış olup en yüksek toplam fenolik madde içeriği (3.39 mg GAE g-1) ile antioksidan aktivite (%36.43) de aynı örnekte tespit edilmiştir. Renk ölçümleri sonuçlarından OD-VE ön işleminin kırmızı pancarın doğal kırmızı rengini korumada kullanılabileceği anlaşılmıştır.

Kaynakça

  • Ahmad, F., & Zaidi, S. (2020). Osmotic Dehydration and Ultrasound Assisted Osmotic Dehydration of Fruits and Vegetables: A Review. International Journal of Tropical Agriculture, 38(4), 417-421.
  • An, K., Li, H., Zhao, D., Ding, S., Tao, H., & Wang, Z. (2013). Effect of Osmotic Dehydration with Pulsed Vacuum on Hot-Air Drying Kinetics and Quality Attributes of Cherry Tomatoes. Drying Technology, 31(6), 698-706. doi:10.1080/07373937.2012.755192
  • An, K., Tang, D., Wu, J., Fu, M., Wen, J., Xiao, G., & Xu, Y. (2019). Comparison of pulsed vacuum and ultrasound osmotic dehydration on drying of Chinese ginger (Zingiber officinale Roscoe): Drying characteristics, antioxidant capacity, and volatile profiles. Food Sci Nutr, 7(8), 2537-2545. doi:10.1002/fsn3.1103
  • Aydos, M., & ErtaŞ, N. (2023). Fonksiyonel bisküvi üretiminde farklı yöntemlerle kurutulmuş muşmula (Mespilus germanica) meyve tozu kullanımı. Harran Tarım ve Gıda Bilimleri Dergisi, 27(1), 113-124. doi:10.29050/harranziraat.1177638
  • Bozkir, H., & Ergün, A. R. (2020). Effect of sonication and osmotic dehydration applications on the hot air drying kinetics and quality of persimmon. Lwt, 131, 109704. doi:10.1016/j.lwt.2020.109704
  • Calderón-Chiu, C., Martínez-Sánchez, C. E., Rodríguez-Miranda, J., Juárez-Barrientos, J. M., Carmona-García, R., & Herman-Lara, E. (2019). Evaluation of the combined effect of osmotic and Refractance Window drying on the drying kinetics, physical, and phytochemical properties of beet. Drying Technology, 38(12), 1663-1675. doi:10.1080/07373937.2019.1655439
  • Carvalho, G. R., Rojas, M. L., Silveira, I., & Augusto, P. E. D. (2020). Drying Accelerators to Enhance Processing and Properties: Ethanol, Isopropanol, Acetone and Acetic Acid as Pre-treatments to Convective Drying of Pumpkin. Food and Bioprocess Technology, 13(11), 1984-1996. doi:10.1007/s11947-020-02542-6
  • Ceclu, L., Berbec (Ctrchelan), A., Nistor, O.-V., & LudmilaRudi. (2016). Effect of drying conditions on the physical properties of red beetroot samples. Paper presented at the International Scientific Conference on Microbial Biotechnology (3rd edition), Moldova.
  • Ciurzynska, A., Falacinska, J., Kowalska, H., Kowalska, J., Galus, S., Marzec, A., & Domian, E. (2021). The Effect of Pre-Treatment (Blanching, Ultrasound and Freezing) on Quality of Freeze-Dried Red Beets. Foods, 10(1). doi:10.3390/foods10010132
  • de Freitas, L. D. C., Brandao, S. C. R., Fernandes da Silva, J. H., Sa da Rocha, O. R., & Azoubel, P. M. (2021). Effect of Ethanol and Ultrasound Pretreatments on Pineapple Convective Drying. Food Technol Biotechnol, 59(2), 209-215. doi:10.17113/ftb.59.02.21.7045
  • Elhussein, E. A. A., & Şahin, S. (2018). Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods. Heat and Mass Transfer, 54, 1901-1911. doi:https://doi.org/10.1007/s00231-018-2278-6
  • Fotiou, D., Argyropoulos, K., Kolompourda, P., & Goula, A. M. (2023). Valorization of peach peels: preservation with an optimized drying process based on ultrasounds pretreatment with ethanol. Biomass Conversion and Biorefinery. doi:10.1007/s13399-023-03753-5
  • Garcia-Noguera, J., Oliveira, F. I. P., Gallão, M. I., Weller, C. L., Rodrigues, S., & Fernandes, F. A. N. (2010). Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technology, 28(2), 294-303. doi:10.1080/07373930903530402
  • Günel, Z. (2022). Enrichment of potato slices with vitamins C and D by vacuum impregnation. Food and Health, 8(3), 181-192. doi:10.3153/fh22018
  • Hamid, M. G., & Mohamed Nour, A. A. A. (2018). Effect of different drying methods on quality attributes of beetroot (Beta vulgaris) slices. World Journal of Science, Technology and Sustainable Development, 15(3), 287-298. doi:10.1108/wjstsd-11-2017-0043
  • Hashemi, S. M. B., & Jafarpour, D. (2021). Antimicrobial and antioxidant properties of Saturn peach subjected to ultrasound-assisted osmotic dehydration. Journal of Food Measurement and Characterization, 15(3), 2516-2523. doi:10.1007/s11694-021-00842-9
  • Horuz, E., & Maskan, M. (2013). Hot air and microwave drying of pomegranate (Punica granatum L.) arils. Journal of Food Science and Technology, 52(1), 285-293. doi:10.1007/s13197-013-1032-9
  • Hosseinzadeh Samani, B., Khodadadi, A., Rostami, S., & Lorigooini, Z. (2021). Investigation and optimization of the effect of osmotic‐ultrasound drying pretreatment on qualitative properties and process energy consumption of Cornus mas. Journal of Food Processing and Preservation, 45(5). doi:10.1111/jfpp.15377
  • İlter, I., Akyıl, S., Devseren, E., Okut, D., Koç, M., & Kaymak Ertekin, F. (2018). Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat and Mass Transfer, 54(7), 2101-2112. doi:10.1007/s00231-018-2294-6
  • Janowicz, M., Ciurzynska, A., & Lenart, A. (2021). Effect of Osmotic Pretreatment Combined with Vacuum Impregnation or High Pressure on the Water Diffusion Coefficients of Convection Drying: Case Study on Apples. Foods, 10(11). doi:10.3390/foods10112605
  • Junqueira, J. R. d. J., CorrÊA, J. L. G., MendonÇA, K. S. d., Mello Junior, R. E. d., & Souza, A. U. (2021). Modeling mass transfer during osmotic dehydration of different vegetable structures under vacuum conditions. Food Science and Technology, 41(2), 439-448. doi:10.1590/fst.02420
  • Karaboğa, Z., & Yildirim, A. (2022). Change in some physical characteristics of ultrasound pre-treated corn during hot-air convection and vacuum drying. Harran Tarım ve Gıda Bilimleri Dergisi, 26(1), 118-132. doi:10.29050/harranziraat.1036363
  • Kırbaş, İ., Tuncer, A. D., Şirin, C., & Usta, H. (2019). Modeling and developing a smart interface for various drying methods of pomelo fruit (Citrus maxima) peel using machine learning approaches. Computers and Electronics in Agriculture, 165, 104928. doi:https://doi.org/10.1016/j.compag.2019.104928
  • Kowalski, S. J., & Łechtańska, J. M. (2015). Drying of red beetroot after osmotic pretreatment: Kinetics and quality considerations. Chemical and Process Engineering, 36(3), 345-354. doi:10.1515/cpe-2015-0024
  • Le, D., & Konsue, N. (2021). Mass Transfer Behavior During Osmotic Dehydration and Vacuum Impregnation of “Phulae” Pineapple and the Effects on Dried Fruit Quality. Current Research in Nutrition and Food Science Journal, 9(1), 308-319. doi:10.12944/crnfsj.9.1.29
  • Li, Y., Wang, X., Wu, Z., Wan, N., & Ming, Y. (2020). Dehydration of hawthorn fruit juices using ultrasound-assisted vacuum drying. Ultrasonics Sonochemistry, 68. doi:https://doi.org/10.1016/j.ultsonch.2020.105219
  • Macedo, L. L., Corrêa, J. L. G., da Silva Araújo, C., & Vimercati, W. C. (2022). Effect of osmotic agent and vacuum application on mass exchange and qualitative parameters of osmotically dehydrated strawberries. Journal of Food Processing and Preservation, 46(7). doi:10.1111/jfpp.16621
  • Mina, Z. P., Kaseke, T., Fadiji, T., & Fawole, O. A. (2022). Effect of gum Arabic and ethanol pretreatments on drying kinetics and quality attributes of dried carrot slices. Heliyon, 8(12). doi:10.1016/j.heliyon.2022.e12037
  • Mocanu, G.-D. N., Oana-Viorela , Andronoiu, D. G., Ceclu, L., GheoneaIonica, I. D. M., Liliana, Barbu, V. V., & Constantin, O. E. P., Livia (2020). Effects of drying methods on quality parameters of potato and red beetroot purée with Lactobacillus delbrueckii. Journal of Food and Nutrition Research, 29(1), 23-34.
  • Mokhtarian, M., Heydari Majd, M., Koushki, F., Bakhshabadi, H., Daraei Garmakhany, A., & Rashidzadeh, S. (2014). Optimisation of pumpkin mass transfer kinetic during osmotic dehydration using artificial neural network and response surface methodology modelling. Quality Assurance and Safety of Crops & Foods, 6(2), 201-214. doi:10.3920/qas2012.0121
  • Nistor, O. V., Seremet Ceclu, L., Andronoiu, D. G., Rudi, L., & Botez, E. (2017). Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var. Cylindra). Food Chem, 236, 59-67. doi:10.1016/j.foodchem.2017.04.129
  • Nowacka, M., Dadan, M., & Tylewicz, U. (2021). Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. Applied Sciences, 11(3). doi:10.3390/app11031269
  • Petruț, G., Pop, A., Muste, S., Păucean, A., Vlad, M., Man, S., . . . Mureșan, A. (2018). Impact of thermal treatment on bioactive compounds of red beet (Beta vulgaris L.) preparations by hot air drying. Journal of Agroalimentary Processes and Technologies 2018, 24(4), 258-262.
  • Prithani, R., & Dash, K. K. (2020). Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innovative Food Science & Emerging Technologies, 64. doi:10.1016/j.ifset.2020.102407
  • Rahaman, A., Zeng, X. A., Kumari, A., Rafiq, M., Sideeg, A., Manzoor, M. F., . . . Ahmed, Z. (2019). Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrason Sonochem, 58, 104643. doi:10.1016/j.ultsonch.2019.104643
  • Richter Reis, F., Marques, C., Moraes, A. C. S. d., & Masson, M. L. (2022). Trends in quality assessment and drying methods used for fruits and vegetables. Food Control, 142. doi:10.1016/j.foodcont.2022.109254
  • Rodrigues, S., Oliveira, F. I. P., Gallão, M. I., & Fernandes, F. A. N. (2009). Effect of Immersion Time in Osmosis and Ultrasound on Papaya Cell Structure during Dehydration. Drying Technology, 27(2), 220-225. doi:10.1080/07373930802605883
  • Rojas, M. L., & Augusto, P. E. D. (2018). Ethanol and ultrasound pre-treatments to improve infrared drying of potato slices. Innovative Food Science & Emerging Technologies, 49, 65-75. doi:10.1016/j.ifset.2018.08.005
  • Şahin, U., & Öztürk, H. K. (2016). Effects of pulsed vacuum osmotic dehydration (PVOD) on drying kinetics of figs (Ficus carica L). Innovative Food Science & Emerging Technologies, 36, 104-111. doi:10.1016/j.ifset.2016.06.003
  • Santos, N. C., Almeida, R. L. J., da Silva, G. M., de Alcantara Silva, V. M., de Alcantara Ribeiro, V. H., de Oliveira Brito, A. C., . . . Saraiva, M. M. T. (2023). Impact of pretreatments with ethanol and freezing on drying slice papaya: drying performance and kinetic of ultrasound-assisted extraction of phenolics compounds. J Sci Food Agric, 103(1), 125-134. doi:10.1002/jsfa.12119
  • Santos, N. C., Almeida, R. L. J., Monteiro, S. S., Silva, E. T. d. V., Silva, V. M. d. A., André, A. M. M. C. N., . . . Brito, A. C. O. d. (2022). Influence of ethanol and ultrasound on drying, bioactive compounds, and antioxidant activity of strawberries (Fragaria × ananassa). Journal of the Indian Chemical Society, 99(7). doi:10.1016/j.jics.2022.100542
  • Seremet Ceclu, L., Nistor, O. V., Andronoiu, D. G., Mocanu, G. D., Barbu, V. V., Maidan, A., . . . Botez, E. (2020). Development of several hybrid drying methods used to obtain red beetroot powder. Food Chem, 310, 125637. doi:10.1016/j.foodchem.2019.125637
  • Sharma, M., & Dash, K. K. (2019). Effect of ultrasonic vacuum pretreatment on mass transfer kinetics during osmotic dehydration of black jamun fruit. Ultrason Sonochem, 58, 104693. doi:10.1016/j.ultsonch.2019.104693
  • Simpson, R., Ramírez, C., Nuñez, H., Jaques, A., & Almonacid, S. (2017). Understanding the success of Page's model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends in Food Science & Technology, 62, 194-201. doi:10.1016/j.tifs.2017.01.003
  • Singh, R. P., Chidambara Murthy, K. N., & Jayaprakasha, G. K. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50(1), 81-86.
  • Tekin, Z. H., & Baslar, M. (2018). The effect of ultrasound-assisted vacuum drying on the drying rate and quality of red peppers. Journal of Thermal Analysis and Calorimetry, 132(2), 1131-1143. doi:10.1007/s10973-018-6991-7
  • Wang, X., Feng, Y., Zhou, C., Sun, Y., Wu, B., Yagoub, A. E. A., & Aboagarib, E. A. A. (2019). Effect of vacuum and ethanol pretreatment on infrared-hot air drying of scallion (Allium fistulosum). Food Chem, 295, 432-440. doi:10.1016/j.foodchem.2019.05.145
  • Wang, X., Kahraman, O., & Feng, H. (2022). Impact of Osmotic Dehydration With/Without Vacuum Pretreatment on Apple Slices Fortified With Hypertonic Fruit Juices. Food and Bioprocess Technology, 15(7), 1588-1602. doi:10.1007/s11947-022-02834-z
  • Wu, X., Zhao, Y., Shi, Q., Liu, J., & Fang, Z. (2023). Effects of ethanol pretreatment on drying kinetics and quality attributes of scallop adductors during heat pump drying. Drying Technology, 1-18. doi:10.1080/07373937.2023.2166059
  • Yun, S.-M., Kang, M., Park, S. Y., Eun, J.-B., & Chun, H. H. (2023). Combined Pre-treatment of Freeze–Thaw and Ultrasonic-Assisted Aqueous Ethanol for Hot Air Drying of Watery Kimchi Cabbage Waste: Effects on Drying Efficiency, Physicochemical and Microbiological Characteristics, and Microstructure. Waste and Biomass Valorization. doi:10.1007/s12649-023-02077-9
  • Zhu, A., & Shen, X. (2014). The model and mass transfer characteristics of convection drying of peach slices. International Journal of Heat and Mass Transfer, 72, 345-351. doi:10.1016/j.ijheatmasstransfer.2014.01.001
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri (HTGBD)
Yazarlar

Latife Betül Gül 0000-0002-4732-7727

Osman Gül 0000-0003-1620-4246

Erken Görünüm Tarihi 26 Aralık 2023
Yayımlanma Tarihi 27 Aralık 2023
Gönderilme Tarihi 26 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 4

Kaynak Göster

APA Gül, L. B., & Gül, O. (2023). Vakum ortamında ozmotik dehidrasyon ön işleminin kırmızı pancarın kütle değişimi, kurutma kinetiği ve fizikokimyasal özellikleri üzerine etkisinin belirlenmesi. Harran Tarım Ve Gıda Bilimleri Dergisi, 27(4), 515-530. https://doi.org/10.29050/harranziraat.1301013

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.