Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 6 Sayı: 3, 186 - 193, 15.12.2022
https://doi.org/10.35860/iarej.1132994

Öz

Kaynakça

  • 1. Elbir, A., Bayrakçı, H., Özgür, A. E., and Deniz, Ö., CO2 Soğutucu Akışkanı İle Çalışan Transkritik Bir Isı Pompası Sisteminin Farklı Basınçlarda Termodinamik Analizi, Teknik Bilimler Dergisi, 2022. 12(1), p. 24-32.
  • 2. Jadhav, P. and Agrawal, H., Comparative study on a straight and helical capillary tube for CO2 transcritical system, Journal of Physics: Conference Series 1451, 012011, 2020. doi:10.1088/1742-6596/1451/1/012011.
  • 3. Jadhav, P. and Agrawal, H., Flow Behavior Of Spiral Capillary Tube For CO2 Transcritical Cycle, Journal of Thermal Analysis and Calorimetry, 2020. vol.141, p.2177–2188. doi.org/10.1007/s10973-020-09536-8.
  • 4. Rocha, T. T. M., Paula, C. H. D., Cangussu, V. M., Maia, A. A. T. and Oliveira, R. N. D., Effect of surface roughness on the mass flow rate predictions for adiabatic capillary tubes, Energy Conversion and Management. International Journal of Refrigeration, October 2020. vol. 118, p. 269-278. doi.org/10.1016/j.ijrefrig.2020.05.020
  • 5. Wang, Z., Wang, F.,Li, G., Song, M., Ma, Z., Ren, H. and Li, K. Experimental İnvestigation On Thermal Characteristics Of Transcritical CO2 Heat Pump Unit Combined With Thermal Energy Storage For Residential Heating. Elsevier Applied Thermal Engineering, 2020. vol.165,114505. doi.org/10.1016/j.applthermaleng.2019.114505
  • 6. Nebot-Andrés, L., Catalán-Gil, J., Sánchez, D., Calleja-Anta, D., Cabello, R., and Llopis, R., Experimental determination of the optimum working conditions of a transcritical CO2 refrigeration plant with integrated mechanical subcooling. International Journal of Refrigeration, 2020. vol.113, p.266-275.
  • 7. Song, Y., Wang, J., Cao, F., Shu, P., and Wang, X., Experimental investigation on a capillary tube based transcritical CO2 heat pump system. Applied Thermal Engineering, 2017. vol.112, p.184-189.
  • 8. Agrawal, N., and Bhattacharyya, S., Adiabatic Capillary Tube flow Of Carbon Dioxide in A Transcritical Heat Pump Cycle. Internatıonal Journal of Energy Research, 2006. vol.31, p.1016–1030.
  • 9. Wang, D., Lu, Y., and Tao, L., Optimal combination of capillary tube geometry and refrigerant charge on a small CO2 water-source heat pump water heater. International Journal of Refrigeration, 2018. vol.88, p.626-636.
  • 10. Agrawal, N., and Bhattacharyya, S. Capillary Tube as an Expansion Device in a CO2 (R744) Transcritical Heat Pump System. In Handbook of Research on Advances and Applications in Refrigeration Systems and Technologies, 2015. p. 360-377. IGI Global.
  • 11. Song, Y., Wang, J., Cao, F., Shu, P., and Wang, X. Experimental investigation on a capillary tube based transcritical CO2 heat pump system. Applied Thermal Engineering, 2017. 112, p. 184-189.
  • 12. Agrawal, N., and Bhattacharyya, S. Experimental investigations on adiabatic capillary tube in a transcritical CO2 heat pump system for simultaneous water cooling and heating. International journal of refrigeration, 2011. 34(2), p. 476-483.
  • 13. Wang, D., Lu, Y., and Tao, L., Optimal combination of capillary tube geometry and refrigerant charge on a small CO2 water-source heat pump water heater. International Journal of Refrigeration, 2018. 88, p. 626-636.
  • 14. Date, A., Patil, O., Shet, S. A., and Agrawal, N., Experimental studies on transcritical CO2 heat pump system for simultaneous water cooling and heating application. International Journal of Green Energy, 2022. 19(2), p. 201-209.
  • 15. Jadhav, P., and Agrawal, N., A comparative study of flow characteristics of adiabatic spiral and helical capillary tube in a CO2 transcritical system. International Journal of Ambient Energy, 2022. 43(1), p. 4594-4601.
  • 16. Rocha, T. T. M., de Paula, C. H., Pabon, J. J. G., de Freitas Paulino, T., and de Oliveira, R. N., Algebraic solution and experimental validation for adiabatic coiled capillary tubes operating in transcritical CO2 cycle. Applied Thermal Engineering, 2020. 181, 115930.
  • 17. Anka, S. K., Mensah, K., Boahen, S., Ohm, T. I., Cho, Y., Choi, J. W. and Choi, J. M., Performance optimization of an air source HVAC system for an internet data center building using the integrated COP method. Journal of Building Engineering, 2022. 61, 105308.
  • 18. Jadhav, P., Sahu, A., and Ballal, S., Numerical study on the straight, helical and spiral capillary tube for the CO2 refrigerant. Научно-технический вестник информационных технологий, механики и оптики, 2022. 22(4), p. 804-811.
  • 19. Freegah, B., Hussain, A. A., and Al-Obaidi, A. R., Comparison Study Between Theoretical Analysis And Artificial Neural Network Of The Capillary Tube. Journal of Thermal Engineering, 2021. 7(3), p. 690-699.
  • 20. El Achkar, G., Liu, B., Liu, Y., and Bennacer, R., Enhancement of refrigeration system performance by refrigerant capillary injection in evaporator. In Journal of Physics: Conference Series, 2021. Vol. 2116, No. 1, p. 012102. IOP Publishing.
  • 21. Danfoss. [cited: 17.01.2018] ]; Available from: http://refrigerants.danfoss.com/co2/#/
  • 22. Elbir, A., Transkritik CO2 Soğutkanlı Bir Isı Pompasının Teorik ve Deneysel İncelenmesi, Doktora Tezi, S.D.Ü. Fen Bilimleri Enstitüsü, Isparta, 2020.
  • 23. Elbir, A., Bayrakçı, H., Özgür, A. E., and Deniz, Ö., CO2 Soğutkanlı Transkritik Bir Isı Pompası Sisteminin Deneysel İncelenmesi Uluslararası Katılımlı 23. Isı Bilimi ve Tekniği Kongresi, ULIBTK 2021.
  • 24. Dwinanto, M. M., Suhanan, and Prajitno., Exergy analysis of a dual-evaporator refrigeration systems. In AIP Conference Proceedings, 2017. January, Vol. 1788, No. 1, p. 030011. AIP Publishing LLC.
  • 25. Klein SA. Engineering Equation Solver(EES) 2020, F-Chart Software, Version 10.835-3D.

Experimental analysis of a transcritical heat pump system with CO2 refrigerant

Yıl 2022, Cilt: 6 Sayı: 3, 186 - 193, 15.12.2022
https://doi.org/10.35860/iarej.1132994

Öz

Today, it is seen that increasing environmental pollution is getting ahead of the increasing energy need. Therefore, more environmentally friendly and more economical refrigerants are needed. In this context, carbon dioxide appears as a natural refrigerant in cooling systems and heat pump (HP) systems, and it has been widely used in recent years. In this study, a single-stage heat pump system with a CO2 refrigerant, with a transcritical cycle, has been experimentally studied. The system is designed as a water-to-water heat pump. The performance of the system has been determined experimentally. In the system, capillary pipes with a diameter of 2.00 mm and two different lengths are used. It is aimed to create different evaporation pressures with two capillary tubes. The first capillary tube is 2.40 m long and the second is 1.20 m long. Gas cooler pressures, gas cooler and evaporator cooling water mass flow rates were kept the same for both cases. A certain gas charge was made and measurements were made for both cases. Thermodynamic analysis and comparison of the system were made. In the short capillary tube system, it was observed that the COPHP value was 7.2% higher, the CO2 mass flow rate increased by 9.1% to achieve the same gas refrigerant pressure value, and the power consumption in the compressor decreased by 1.8%. In addition, the gas cooler outlet temperature, the evaporator outlet temperature and the change in ambient temperatures, as well as the exergetic destruction and exergetic efficiencies in the system and system components are presented in figures with EES.

Kaynakça

  • 1. Elbir, A., Bayrakçı, H., Özgür, A. E., and Deniz, Ö., CO2 Soğutucu Akışkanı İle Çalışan Transkritik Bir Isı Pompası Sisteminin Farklı Basınçlarda Termodinamik Analizi, Teknik Bilimler Dergisi, 2022. 12(1), p. 24-32.
  • 2. Jadhav, P. and Agrawal, H., Comparative study on a straight and helical capillary tube for CO2 transcritical system, Journal of Physics: Conference Series 1451, 012011, 2020. doi:10.1088/1742-6596/1451/1/012011.
  • 3. Jadhav, P. and Agrawal, H., Flow Behavior Of Spiral Capillary Tube For CO2 Transcritical Cycle, Journal of Thermal Analysis and Calorimetry, 2020. vol.141, p.2177–2188. doi.org/10.1007/s10973-020-09536-8.
  • 4. Rocha, T. T. M., Paula, C. H. D., Cangussu, V. M., Maia, A. A. T. and Oliveira, R. N. D., Effect of surface roughness on the mass flow rate predictions for adiabatic capillary tubes, Energy Conversion and Management. International Journal of Refrigeration, October 2020. vol. 118, p. 269-278. doi.org/10.1016/j.ijrefrig.2020.05.020
  • 5. Wang, Z., Wang, F.,Li, G., Song, M., Ma, Z., Ren, H. and Li, K. Experimental İnvestigation On Thermal Characteristics Of Transcritical CO2 Heat Pump Unit Combined With Thermal Energy Storage For Residential Heating. Elsevier Applied Thermal Engineering, 2020. vol.165,114505. doi.org/10.1016/j.applthermaleng.2019.114505
  • 6. Nebot-Andrés, L., Catalán-Gil, J., Sánchez, D., Calleja-Anta, D., Cabello, R., and Llopis, R., Experimental determination of the optimum working conditions of a transcritical CO2 refrigeration plant with integrated mechanical subcooling. International Journal of Refrigeration, 2020. vol.113, p.266-275.
  • 7. Song, Y., Wang, J., Cao, F., Shu, P., and Wang, X., Experimental investigation on a capillary tube based transcritical CO2 heat pump system. Applied Thermal Engineering, 2017. vol.112, p.184-189.
  • 8. Agrawal, N., and Bhattacharyya, S., Adiabatic Capillary Tube flow Of Carbon Dioxide in A Transcritical Heat Pump Cycle. Internatıonal Journal of Energy Research, 2006. vol.31, p.1016–1030.
  • 9. Wang, D., Lu, Y., and Tao, L., Optimal combination of capillary tube geometry and refrigerant charge on a small CO2 water-source heat pump water heater. International Journal of Refrigeration, 2018. vol.88, p.626-636.
  • 10. Agrawal, N., and Bhattacharyya, S. Capillary Tube as an Expansion Device in a CO2 (R744) Transcritical Heat Pump System. In Handbook of Research on Advances and Applications in Refrigeration Systems and Technologies, 2015. p. 360-377. IGI Global.
  • 11. Song, Y., Wang, J., Cao, F., Shu, P., and Wang, X. Experimental investigation on a capillary tube based transcritical CO2 heat pump system. Applied Thermal Engineering, 2017. 112, p. 184-189.
  • 12. Agrawal, N., and Bhattacharyya, S. Experimental investigations on adiabatic capillary tube in a transcritical CO2 heat pump system for simultaneous water cooling and heating. International journal of refrigeration, 2011. 34(2), p. 476-483.
  • 13. Wang, D., Lu, Y., and Tao, L., Optimal combination of capillary tube geometry and refrigerant charge on a small CO2 water-source heat pump water heater. International Journal of Refrigeration, 2018. 88, p. 626-636.
  • 14. Date, A., Patil, O., Shet, S. A., and Agrawal, N., Experimental studies on transcritical CO2 heat pump system for simultaneous water cooling and heating application. International Journal of Green Energy, 2022. 19(2), p. 201-209.
  • 15. Jadhav, P., and Agrawal, N., A comparative study of flow characteristics of adiabatic spiral and helical capillary tube in a CO2 transcritical system. International Journal of Ambient Energy, 2022. 43(1), p. 4594-4601.
  • 16. Rocha, T. T. M., de Paula, C. H., Pabon, J. J. G., de Freitas Paulino, T., and de Oliveira, R. N., Algebraic solution and experimental validation for adiabatic coiled capillary tubes operating in transcritical CO2 cycle. Applied Thermal Engineering, 2020. 181, 115930.
  • 17. Anka, S. K., Mensah, K., Boahen, S., Ohm, T. I., Cho, Y., Choi, J. W. and Choi, J. M., Performance optimization of an air source HVAC system for an internet data center building using the integrated COP method. Journal of Building Engineering, 2022. 61, 105308.
  • 18. Jadhav, P., Sahu, A., and Ballal, S., Numerical study on the straight, helical and spiral capillary tube for the CO2 refrigerant. Научно-технический вестник информационных технологий, механики и оптики, 2022. 22(4), p. 804-811.
  • 19. Freegah, B., Hussain, A. A., and Al-Obaidi, A. R., Comparison Study Between Theoretical Analysis And Artificial Neural Network Of The Capillary Tube. Journal of Thermal Engineering, 2021. 7(3), p. 690-699.
  • 20. El Achkar, G., Liu, B., Liu, Y., and Bennacer, R., Enhancement of refrigeration system performance by refrigerant capillary injection in evaporator. In Journal of Physics: Conference Series, 2021. Vol. 2116, No. 1, p. 012102. IOP Publishing.
  • 21. Danfoss. [cited: 17.01.2018] ]; Available from: http://refrigerants.danfoss.com/co2/#/
  • 22. Elbir, A., Transkritik CO2 Soğutkanlı Bir Isı Pompasının Teorik ve Deneysel İncelenmesi, Doktora Tezi, S.D.Ü. Fen Bilimleri Enstitüsü, Isparta, 2020.
  • 23. Elbir, A., Bayrakçı, H., Özgür, A. E., and Deniz, Ö., CO2 Soğutkanlı Transkritik Bir Isı Pompası Sisteminin Deneysel İncelenmesi Uluslararası Katılımlı 23. Isı Bilimi ve Tekniği Kongresi, ULIBTK 2021.
  • 24. Dwinanto, M. M., Suhanan, and Prajitno., Exergy analysis of a dual-evaporator refrigeration systems. In AIP Conference Proceedings, 2017. January, Vol. 1788, No. 1, p. 030011. AIP Publishing LLC.
  • 25. Klein SA. Engineering Equation Solver(EES) 2020, F-Chart Software, Version 10.835-3D.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevresel Olarak Sürdürülebilir Mühendislik, Enerji Sistemleri Mühendisliği (Diğer), Makine Mühendisliği
Bölüm Research Articles
Yazarlar

Ahmet Elbir 0000-0001-8934-7665

Hilmi Cenk Bayrakçı 0000-0001-5064-7310

Arif Emre Özgür 0000-0001-6382-5462

Özdemir Deniz 0000-0002-8168-9668

Yayımlanma Tarihi 15 Aralık 2022
Gönderilme Tarihi 20 Haziran 2022
Kabul Tarihi 23 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 3

Kaynak Göster

APA Elbir, A., Bayrakçı, H. C., Özgür, A. E., Deniz, Ö. (2022). Experimental analysis of a transcritical heat pump system with CO2 refrigerant. International Advanced Researches and Engineering Journal, 6(3), 186-193. https://doi.org/10.35860/iarej.1132994
AMA Elbir A, Bayrakçı HC, Özgür AE, Deniz Ö. Experimental analysis of a transcritical heat pump system with CO2 refrigerant. Int. Adv. Res. Eng. J. Aralık 2022;6(3):186-193. doi:10.35860/iarej.1132994
Chicago Elbir, Ahmet, Hilmi Cenk Bayrakçı, Arif Emre Özgür, ve Özdemir Deniz. “Experimental Analysis of a Transcritical Heat Pump System With CO2 Refrigerant”. International Advanced Researches and Engineering Journal 6, sy. 3 (Aralık 2022): 186-93. https://doi.org/10.35860/iarej.1132994.
EndNote Elbir A, Bayrakçı HC, Özgür AE, Deniz Ö (01 Aralık 2022) Experimental analysis of a transcritical heat pump system with CO2 refrigerant. International Advanced Researches and Engineering Journal 6 3 186–193.
IEEE A. Elbir, H. C. Bayrakçı, A. E. Özgür, ve Ö. Deniz, “Experimental analysis of a transcritical heat pump system with CO2 refrigerant”, Int. Adv. Res. Eng. J., c. 6, sy. 3, ss. 186–193, 2022, doi: 10.35860/iarej.1132994.
ISNAD Elbir, Ahmet vd. “Experimental Analysis of a Transcritical Heat Pump System With CO2 Refrigerant”. International Advanced Researches and Engineering Journal 6/3 (Aralık 2022), 186-193. https://doi.org/10.35860/iarej.1132994.
JAMA Elbir A, Bayrakçı HC, Özgür AE, Deniz Ö. Experimental analysis of a transcritical heat pump system with CO2 refrigerant. Int. Adv. Res. Eng. J. 2022;6:186–193.
MLA Elbir, Ahmet vd. “Experimental Analysis of a Transcritical Heat Pump System With CO2 Refrigerant”. International Advanced Researches and Engineering Journal, c. 6, sy. 3, 2022, ss. 186-93, doi:10.35860/iarej.1132994.
Vancouver Elbir A, Bayrakçı HC, Özgür AE, Deniz Ö. Experimental analysis of a transcritical heat pump system with CO2 refrigerant. Int. Adv. Res. Eng. J. 2022;6(3):186-93.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.