Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 1 - 14, 30.06.2024
https://doi.org/10.38061/idunas.1495204

Öz

Kaynakça

  • 1. AlihaM.R.M., Haghighatpour P.J., Tavana A. (2022). Application of asymmetric semi-circular bend test for determining mixed mode I + II fracture toughness of compacted soil material, Eng. Frac. Mech., V.262, 108268
  • 2. Aliha MRM., Kucheki H.G., Asadi M.M. (2021).On the use of different diametral compression cracked disc shape specim ens for introducing mode III deformation. Fatigue & Frac. Eng. Mat. & Struc. 44(11), 3135-3151
  • 3. Bazant Z. (2002) Concrete Fracture Models: testing and practice. Eng. Frac. Mech. 69, 165-205
  • 4. Behnam Z. (2021). Crack Front Shape Evolution in Structural Components subjected to Fatigue Loading. University of Adelaide, School of Mechanical Engineering, Australia
  • 5. Bittencourt, T.N. (1993). Computer simulation of linear and nonlinear crack propagation in cementitious materials. Ph.D. Thesis, Cornell University, Ithaca, N.Y
  • 6. Chen X., Yuan, J., Dong, Q., Zhao, X. (2020). Meso-scale cracking behavior of Cement Treated Base material, Constr. and Build. Mat., V. 239(1–2), 117823
  • 7. Crockford, W.W., and Little D.N.. (1987). Tensile Fracture and Fatigue of Cement-Stabilized Soil. J.l of Trans. Eng., V. 113(5), 520–537. https://doi.org/10.1061/(ASCE)0733-947X(1987)113:5(520).
  • 8. Daneshfar M, Hassani A, Aliha MRM, Sadowski T. (2023) Assessment of the Specimen Size Effect on the Fracture Energy of Macro-Synthetic-Fiber-Reinforced Concrete. Materials, 16(2):673.
  • 9. Davis J. (1991). Fracture characteristics of cement-stabilized soils. J. Mat. Sci. V.26, 4095–4103
  • 10. Dugdale, D. S. (1960). Yielding of steel sheets containing slits, J. Mech. Phsy. Solids, 8, 100- 104
  • 11. Erarslan, N. (2023). Investigation of the tensile-shear failure of asphalt concrete base (ACB) construction materials using a non-linear cohesive crack model and critical crack threshold analysis. Const. and Build. Mater., V.364, 129901
  • 12. Erdogan, F.,Sih G.C. (1963) On the crack extension in plates under plane loading and transverse shear J. Bas. Eng., 85D, 519-527
  • 13. Fondjo, A.A., 2021. Theron, E. R., P. Ray Stabilization of expansive soils using mechanical and chemical methods: a comprehensive review. Civ. Eng. Arch., 9, 1295-1308
  • 14. Guo, Q., Chen, Z., Liu, P., Li, Y., Hu, J., Gao, Y., Li, X. (2021). Influence of basalt fiber on mode I and II fracture properties of asphalt mixture at medium and low temperatures. Theor. Appl. Fract. Mech., V.112, 102884.
  • 15. Hillerborg, A., Modeer, M., and Petersson, P.E. (1976). Analysis of crack formation and crack growth in concrete by m eans of fracture mechanics and finite elements, Cement and Conc. Res., V.6 ,773-782.
  • 16. Lajtai EZ. (1971) A theoretical and experimental evaluation of the Griffith theory of brittle fracture. Tectonophysics, 11, 129-156
  • 17. Ma, Z., Liu,W., Li, S., Lu, X., Bessling, B., Guo, X., Yang,Q. (2022). A local to global (L2G) finite element method for efficient and robust analysis of arbitrary cracking in 2D solids, Comp. Meth. in Appl. Mech. and Eng., V. 398, 115205,
  • 18. Mashaan, N., Karim, M., Khodary, F., Saboo, N., Milad, A. (2021). Bituminous Pavement Reinforcement with Fiber: A Review. Civil. Eng., V. 2, 599–612. https://doi.org/10.3390/ civileng2030033
  • 19. Mousavi S.R., Ghasemi M., and Dehghani M. (2024). Investigating the fracture toughness of the self compacting concrete using ENDB samples by changing the aggregate size and percent of steel fiber. Eng. Solid Mech., 12(1), 17-26
  • 20. Paul, D. K., and Gnanendran C. T.. (2016). Characterization of lightly stabilized granular base materials using monotonic and cyclic load flexural testing. J. Mater. Civ. Eng. 28 (1), 04015074.
  • 21. Pietras D., Aliha M.R.M., Hadi G. Kucheki, Tomasz S. (2023) Tensile and tear-type fracture toughness of gypsum material: Direct and indirect testing methods, J. Rock Mech. and Geotech. Eng. V.15(7), 1777-1796
  • 22. Prasad, A.S.C.V. and Redy, C.S.V. (2015). Strength characterıstıcs of cement stabılızed well graded gravel. Conference: Indian Geotechnical Conference 2015, Pune, India. 23. Rezaeian, M., Ferreira, M.V., Ekinci, A. (2019). Mechanical behaviour of a compacted well-graded granular material with and without cement, Soils and Foundations, V. 59(3), 687-698
  • 24. Savran, K.Z., (1988). Stabilization of Cohesive Soils with Fly Ash, Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara, 62.
  • 25. Shahbazian B. and Mirsayar M.M. (2023). Fracture mechanics of cellular structures: past, present, and future directions. Eng. Solid Mech., 11(2), 231-242.
  • 26. Sophan K., Das, B.M., (2007). Durability of soil–cements against fatigue fracture. J Mater Civ Eng, 19 (1), 26-32
  • 27. Takahassi, H., Omori S., Asada H., Fukawa H. (2021). Mechanical Properties of Cement-Treated Soil Mixed with Cellulose Nanofibre. Appl. Sci., V.11(14), 6425, https://doi.org/10.3390/app11146425
  • 28. Whittaker B.N., Singh R.N., Sun G., (1992). Rock Fracture Mechanics - Principles, Design and Applications”, Elsevier, Amsterdam.
  • 29. Xia B., Zeng, L., Ji, F., Xie, M., Hong, Z. (2022). Plasticity role in strength behavior of cement-phosphogypsum stabilized soils, .J. Rock Mech. and Geotech. Eng., V. 14(6), 1977-1988
  • 30. Xiaokang, Z., Qiao, D., Xueqin, C., Haihang, H., Tianjıe, T. (2021). Evaluation of fatigue performance of cement-treated composites based on residual strength through discrete element method. Const. and Build. Mater., V. 306, 1, 173-198
  • 31. Zada, U., Arshad J., Iqbal M., (2023). Sayed M. Eldin, Meshal A., Souhila R.B, Sultan A. Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities, Case Studies in Constr. Mater., V. 18, e01985

Investigation of the tensile and mixed mode (tensile and shear) fracture properties of cement-stabilized soils by numerical analysis

Yıl 2024, , 1 - 14, 30.06.2024
https://doi.org/10.38061/idunas.1495204

Öz

In this study, crack initiation, crack propagation, and fracture failure of soil specimens stabilized with cement, an elasto-plastic material, are investigated by numerical analyses. There is no international standard recommended in the literature to find the mode I and mixed mode I-II (tensile and shear) failure values of reinforced soil materials. The aim of this study is to investigate the applicability of ASTM C78, an international standard recommended for concrete specimens, for both indirect tensile and tensile-compression strength tests. Stress and crack analyses in beam specimens were performed using FRANC2D software. The indirect tensile fracture toughness (KIC) value of the modelled beam specimens was found to be 0.32 MPa√m. Similarly, the indirect tensile and shear fracture toughness values were found to be 0.38 MPa√m.
Both non-cohesive and cohesive crack analyses were performed in numerical modeling. Numerical analysis results showed that the most significant slipping between the cohesive crack surfaces was observed in the specimen under mixed mode I-II loading. Moreover, "wing crack" growth in cement-stabilized soil specimens was obtained in numerical modeling in accordance with the principles of fracture mechanics. It is believed that the results of this study will lead to a new international standard for the determination of mode I and mixed mode I-II fracture toughness of cement-stabilized soil specimens.

Kaynakça

  • 1. AlihaM.R.M., Haghighatpour P.J., Tavana A. (2022). Application of asymmetric semi-circular bend test for determining mixed mode I + II fracture toughness of compacted soil material, Eng. Frac. Mech., V.262, 108268
  • 2. Aliha MRM., Kucheki H.G., Asadi M.M. (2021).On the use of different diametral compression cracked disc shape specim ens for introducing mode III deformation. Fatigue & Frac. Eng. Mat. & Struc. 44(11), 3135-3151
  • 3. Bazant Z. (2002) Concrete Fracture Models: testing and practice. Eng. Frac. Mech. 69, 165-205
  • 4. Behnam Z. (2021). Crack Front Shape Evolution in Structural Components subjected to Fatigue Loading. University of Adelaide, School of Mechanical Engineering, Australia
  • 5. Bittencourt, T.N. (1993). Computer simulation of linear and nonlinear crack propagation in cementitious materials. Ph.D. Thesis, Cornell University, Ithaca, N.Y
  • 6. Chen X., Yuan, J., Dong, Q., Zhao, X. (2020). Meso-scale cracking behavior of Cement Treated Base material, Constr. and Build. Mat., V. 239(1–2), 117823
  • 7. Crockford, W.W., and Little D.N.. (1987). Tensile Fracture and Fatigue of Cement-Stabilized Soil. J.l of Trans. Eng., V. 113(5), 520–537. https://doi.org/10.1061/(ASCE)0733-947X(1987)113:5(520).
  • 8. Daneshfar M, Hassani A, Aliha MRM, Sadowski T. (2023) Assessment of the Specimen Size Effect on the Fracture Energy of Macro-Synthetic-Fiber-Reinforced Concrete. Materials, 16(2):673.
  • 9. Davis J. (1991). Fracture characteristics of cement-stabilized soils. J. Mat. Sci. V.26, 4095–4103
  • 10. Dugdale, D. S. (1960). Yielding of steel sheets containing slits, J. Mech. Phsy. Solids, 8, 100- 104
  • 11. Erarslan, N. (2023). Investigation of the tensile-shear failure of asphalt concrete base (ACB) construction materials using a non-linear cohesive crack model and critical crack threshold analysis. Const. and Build. Mater., V.364, 129901
  • 12. Erdogan, F.,Sih G.C. (1963) On the crack extension in plates under plane loading and transverse shear J. Bas. Eng., 85D, 519-527
  • 13. Fondjo, A.A., 2021. Theron, E. R., P. Ray Stabilization of expansive soils using mechanical and chemical methods: a comprehensive review. Civ. Eng. Arch., 9, 1295-1308
  • 14. Guo, Q., Chen, Z., Liu, P., Li, Y., Hu, J., Gao, Y., Li, X. (2021). Influence of basalt fiber on mode I and II fracture properties of asphalt mixture at medium and low temperatures. Theor. Appl. Fract. Mech., V.112, 102884.
  • 15. Hillerborg, A., Modeer, M., and Petersson, P.E. (1976). Analysis of crack formation and crack growth in concrete by m eans of fracture mechanics and finite elements, Cement and Conc. Res., V.6 ,773-782.
  • 16. Lajtai EZ. (1971) A theoretical and experimental evaluation of the Griffith theory of brittle fracture. Tectonophysics, 11, 129-156
  • 17. Ma, Z., Liu,W., Li, S., Lu, X., Bessling, B., Guo, X., Yang,Q. (2022). A local to global (L2G) finite element method for efficient and robust analysis of arbitrary cracking in 2D solids, Comp. Meth. in Appl. Mech. and Eng., V. 398, 115205,
  • 18. Mashaan, N., Karim, M., Khodary, F., Saboo, N., Milad, A. (2021). Bituminous Pavement Reinforcement with Fiber: A Review. Civil. Eng., V. 2, 599–612. https://doi.org/10.3390/ civileng2030033
  • 19. Mousavi S.R., Ghasemi M., and Dehghani M. (2024). Investigating the fracture toughness of the self compacting concrete using ENDB samples by changing the aggregate size and percent of steel fiber. Eng. Solid Mech., 12(1), 17-26
  • 20. Paul, D. K., and Gnanendran C. T.. (2016). Characterization of lightly stabilized granular base materials using monotonic and cyclic load flexural testing. J. Mater. Civ. Eng. 28 (1), 04015074.
  • 21. Pietras D., Aliha M.R.M., Hadi G. Kucheki, Tomasz S. (2023) Tensile and tear-type fracture toughness of gypsum material: Direct and indirect testing methods, J. Rock Mech. and Geotech. Eng. V.15(7), 1777-1796
  • 22. Prasad, A.S.C.V. and Redy, C.S.V. (2015). Strength characterıstıcs of cement stabılızed well graded gravel. Conference: Indian Geotechnical Conference 2015, Pune, India. 23. Rezaeian, M., Ferreira, M.V., Ekinci, A. (2019). Mechanical behaviour of a compacted well-graded granular material with and without cement, Soils and Foundations, V. 59(3), 687-698
  • 24. Savran, K.Z., (1988). Stabilization of Cohesive Soils with Fly Ash, Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara, 62.
  • 25. Shahbazian B. and Mirsayar M.M. (2023). Fracture mechanics of cellular structures: past, present, and future directions. Eng. Solid Mech., 11(2), 231-242.
  • 26. Sophan K., Das, B.M., (2007). Durability of soil–cements against fatigue fracture. J Mater Civ Eng, 19 (1), 26-32
  • 27. Takahassi, H., Omori S., Asada H., Fukawa H. (2021). Mechanical Properties of Cement-Treated Soil Mixed with Cellulose Nanofibre. Appl. Sci., V.11(14), 6425, https://doi.org/10.3390/app11146425
  • 28. Whittaker B.N., Singh R.N., Sun G., (1992). Rock Fracture Mechanics - Principles, Design and Applications”, Elsevier, Amsterdam.
  • 29. Xia B., Zeng, L., Ji, F., Xie, M., Hong, Z. (2022). Plasticity role in strength behavior of cement-phosphogypsum stabilized soils, .J. Rock Mech. and Geotech. Eng., V. 14(6), 1977-1988
  • 30. Xiaokang, Z., Qiao, D., Xueqin, C., Haihang, H., Tianjıe, T. (2021). Evaluation of fatigue performance of cement-treated composites based on residual strength through discrete element method. Const. and Build. Mater., V. 306, 1, 173-198
  • 31. Zada, U., Arshad J., Iqbal M., (2023). Sayed M. Eldin, Meshal A., Souhila R.B, Sultan A. Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities, Case Studies in Constr. Mater., V. 18, e01985
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Nazife Erarslan 0000-0002-5202-9644

Pınar Çavdar 0000-0002-1989-4759

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 3 Haziran 2024
Kabul Tarihi 20 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Erarslan, N., & Çavdar, P. (2024). Investigation of the tensile and mixed mode (tensile and shear) fracture properties of cement-stabilized soils by numerical analysis. Natural and Applied Sciences Journal, 7(1), 1-14. https://doi.org/10.38061/idunas.1495204