Araştırma Makalesi
BibTex RIS Kaynak Göster

On Timelike Rectifying Slant Helices in Minkowski 3-Space

Yıl 2018, Cilt: 11 Sayı: 1, 17 - 25, 30.04.2018
https://doi.org/10.36890/iejg.545073

Öz

Kaynakça

  • [1] Ali, T.A., Position vector of a timelike slant helix in Minkowski 3-space. Journal of the Mathematical Analysis and Applications. 365 (2010), no. 2, 559-569.
  • [2] Ali, T.A. and Lopez, R., Slant helices in Minkowski 3-space. Journal of Korean Math. Soc. 40 (2011), no. 1, 159-167.
  • [3] Altunkaya, B. and Kula, L., On rectifying slant helices in Euclidean 3-space. Konuralp J. Math. 4 (2016), no. 2, 17-24.
  • [4] Altunkaya, B. and Kula, L., On spacelike rectifying slant helices in in Minkowski 3-space. Turk. Journal Math. (accepted).
  • [5] Chen B.Y., When does the position vector of a space curve always lie in its rectifying plane? Amer. Math. Monthly. 110 (2003), 147-152.
  • [6] Chen B.Y. and Dillen, F., Rectifying curves as centrodes and extremal curves. Bull. Inst. Math. Academia Sinica. 33 (2005), no. 2, 77-90.
  • [7] Ilarslan K, Nešovi´c E, Petrovi´c-Torgašev M Some Characterizations of Rectifying Curves in the Minkowski 3-space. Novi Sad. Journal Math. 33(2002), no. 2, 23-32.
  • [8] Izumiya, S. and Takeuchi, N., New special curves and developable surfaces. Turk. Journal Math. 28(2004), 153-163.
  • [9] Izumiya, S. and Takeuchi, N., Generic properties of helices and Bertrand curves. Journal of Geometry. 74 (2002), no. 1, 97-109.
  • [10] Kula, L. and Yayli, Y., On slant helix and its spherical indicatrix. Applied Mathematics and Computation. 169 (2005), 600-607.
  • [11] Kula, L., Ekmekci, N., Yayli, Y. and Ilarslan, K., Characterizations of slant helices in Euclidean 3-space. Turk. Journal Math. 34 (2010), no. 2, 261-273.
  • [12] O’Neill, B., Elementary Differential Geometry. Academic Press, New York, 2010.
  • [13] Struik, D.J., Lectures on Classical Differential Geometry. Dover Publications, New York, 1961.

On Timelike Rectifying Slant Helices in Minkowski 3-Space

Yıl 2018, Cilt: 11 Sayı: 1, 17 - 25, 30.04.2018
https://doi.org/10.36890/iejg.545073

Öz

In this work, we study timelike rectifying slant helices in E31. First, we find general equations ofthe curvature and the torsion of timelike rectifying slant helices. After that, by solving second
order linear differential equations, we obtain families of timelike rectifying slant helices that lieon cones.Helices arise in nanosprings, carbon nanotubes, DNA double and collagen triple helices. The double helix shape is commonly associated with DNA [1]. In differential geometry, a general helix in Euclidean 3-space is characterized by the property that the tangent lines make a constant angle with a fixed direction [12, 13]. Similarly, the notion of slant helix was introduced by Izuyama and Takeuchi by the property that the principal normal lines make a constant angle with a fixed direction [8, 9]. They showed that a space curve is a slant helix if and only if the geodesic curvature of the principal normal of the curve is a constant function. In [10, 11], Kula et al. studied the spherical images of slant helices. Later, Ahmet T. Ali studied slant helices in Minkowski 3-space [1, 2]. The notion of rectifying curve has been introduced by Chen [5, 6]. Chen proposed the conditions under which the position vector of a unit speed curve lies in its rectifying plane. Besides, he stated the importance of rectifying curves in Physics.

Kaynakça

  • [1] Ali, T.A., Position vector of a timelike slant helix in Minkowski 3-space. Journal of the Mathematical Analysis and Applications. 365 (2010), no. 2, 559-569.
  • [2] Ali, T.A. and Lopez, R., Slant helices in Minkowski 3-space. Journal of Korean Math. Soc. 40 (2011), no. 1, 159-167.
  • [3] Altunkaya, B. and Kula, L., On rectifying slant helices in Euclidean 3-space. Konuralp J. Math. 4 (2016), no. 2, 17-24.
  • [4] Altunkaya, B. and Kula, L., On spacelike rectifying slant helices in in Minkowski 3-space. Turk. Journal Math. (accepted).
  • [5] Chen B.Y., When does the position vector of a space curve always lie in its rectifying plane? Amer. Math. Monthly. 110 (2003), 147-152.
  • [6] Chen B.Y. and Dillen, F., Rectifying curves as centrodes and extremal curves. Bull. Inst. Math. Academia Sinica. 33 (2005), no. 2, 77-90.
  • [7] Ilarslan K, Nešovi´c E, Petrovi´c-Torgašev M Some Characterizations of Rectifying Curves in the Minkowski 3-space. Novi Sad. Journal Math. 33(2002), no. 2, 23-32.
  • [8] Izumiya, S. and Takeuchi, N., New special curves and developable surfaces. Turk. Journal Math. 28(2004), 153-163.
  • [9] Izumiya, S. and Takeuchi, N., Generic properties of helices and Bertrand curves. Journal of Geometry. 74 (2002), no. 1, 97-109.
  • [10] Kula, L. and Yayli, Y., On slant helix and its spherical indicatrix. Applied Mathematics and Computation. 169 (2005), 600-607.
  • [11] Kula, L., Ekmekci, N., Yayli, Y. and Ilarslan, K., Characterizations of slant helices in Euclidean 3-space. Turk. Journal Math. 34 (2010), no. 2, 261-273.
  • [12] O’Neill, B., Elementary Differential Geometry. Academic Press, New York, 2010.
  • [13] Struik, D.J., Lectures on Classical Differential Geometry. Dover Publications, New York, 1961.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Bülent Altunkaya

Levent Kula

Yayımlanma Tarihi 30 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 11 Sayı: 1

Kaynak Göster

APA Altunkaya, B., & Kula, L. (2018). On Timelike Rectifying Slant Helices in Minkowski 3-Space. International Electronic Journal of Geometry, 11(1), 17-25. https://doi.org/10.36890/iejg.545073
AMA Altunkaya B, Kula L. On Timelike Rectifying Slant Helices in Minkowski 3-Space. Int. Electron. J. Geom. Nisan 2018;11(1):17-25. doi:10.36890/iejg.545073
Chicago Altunkaya, Bülent, ve Levent Kula. “On Timelike Rectifying Slant Helices in Minkowski 3-Space”. International Electronic Journal of Geometry 11, sy. 1 (Nisan 2018): 17-25. https://doi.org/10.36890/iejg.545073.
EndNote Altunkaya B, Kula L (01 Nisan 2018) On Timelike Rectifying Slant Helices in Minkowski 3-Space. International Electronic Journal of Geometry 11 1 17–25.
IEEE B. Altunkaya ve L. Kula, “On Timelike Rectifying Slant Helices in Minkowski 3-Space”, Int. Electron. J. Geom., c. 11, sy. 1, ss. 17–25, 2018, doi: 10.36890/iejg.545073.
ISNAD Altunkaya, Bülent - Kula, Levent. “On Timelike Rectifying Slant Helices in Minkowski 3-Space”. International Electronic Journal of Geometry 11/1 (Nisan 2018), 17-25. https://doi.org/10.36890/iejg.545073.
JAMA Altunkaya B, Kula L. On Timelike Rectifying Slant Helices in Minkowski 3-Space. Int. Electron. J. Geom. 2018;11:17–25.
MLA Altunkaya, Bülent ve Levent Kula. “On Timelike Rectifying Slant Helices in Minkowski 3-Space”. International Electronic Journal of Geometry, c. 11, sy. 1, 2018, ss. 17-25, doi:10.36890/iejg.545073.
Vancouver Altunkaya B, Kula L. On Timelike Rectifying Slant Helices in Minkowski 3-Space. Int. Electron. J. Geom. 2018;11(1):17-25.