We study a non-trivial generalized $m$-quasi Einstein manifold $M$ with finite $m$ and associated divergence-free affine Killing vector field, and show that $M$ reduces to an $m$-quasi Einstein manifold. In addition, if $M$ is complete, then it splits as the product of a line and an $(n-1)$-dimensional negatively Einstein manifold. Finally, we show that the same result holds for a complete non-trivial $m$-quasi Einstein manifold $M$ with finite $m$ and associated affine Killing vector field.
Generalized $m$-quasi Einstein manifold affine Killing vector field Einstein manifold Ricci almost soliton
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Yayımlanma Tarihi | 30 Nisan 2023 |
Kabul Tarihi | 20 Nisan 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 16 Sayı: 1 |