Consider $TM$ as the tangent bundle of a (pseudo-)Riemannian manifold $M$, equipped with a Ricci quarter-symmetric metric connection $\overline{\nabla }$. This research article aims to accomplish two primary objectives. Firstly, the paper undertakes the classification of specific types of vector fields, including incompressible vector fields, harmonic vector fields, concurrent vector fields, conformal vector fields, projective vector fields, and $% \widetilde{\varphi }(Ric)$ vector fields, within the framework of $\overline{% \nabla }$ on $T\dot{M}$. Secondly, the paper establishes the necessary and sufficient conditions for the tangent bundle $TM$ to become as a Riemannian soliton and a generalized Ricci-Yamabe soliton with regard to the connection $\overline{\nabla }$.
Complete lift metric Ricci quarter-symmetric metric connection tangent bundle vector field Riemannian soliton generalized Ricci-Yamabe soliton
Birincil Dil | İngilizce |
---|---|
Konular | Cebirsel ve Diferansiyel Geometri |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Erken Görünüm Tarihi | 16 Eylül 2024 |
Yayımlanma Tarihi | 27 Ekim 2024 |
Kabul Tarihi | 8 Mart 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 17 Sayı: 2 |