Araştırma Makalesi
BibTex RIS Kaynak Göster

THE STRENGTH OF THE CONNECTION TYPES USED IN 3-DIMENSIONAL PRINTER PARTS PRODUCED PARTIALLY

Yıl 2022, Cilt: 6 Sayı: 1, 137 - 142, 30.04.2022
https://doi.org/10.46519/ij3dptdi.1050431

Öz

Three-dimensional (3D) printer technology is an important and popular technology that is frequently preferred today. As this technology can be used in different areas of production in the future, the limitations in design will be eliminated. However, 3D printing technology has disadvantages such as limited build volume. For this reason, the created volume is designed in parts and these parts are connected to each other to form the body. When printing a large model from 3D printers, the connection of segmented parts can be made with various connection types. The aim of this study is to evaluate the connection types used in a pieced product manufactured with a 3D printer in terms of strength and to determine the most suitable connection type. In this study, four different connection types were created to connect the parts together. A standard tensile sample design was made to evaluate the strength of the connection types and this design was produced by dividing it into two. The tensile specimen produced in two parts is bonded together with super glue (cyanoacrylate), pin, weld and both weld and adhesive (cyanoacrylate). The unbroken one-piece form of the tensile specimen was produced as a reference specimen. Seven pieces produced for each group were subjected to a tensile test with a universal tensile testing device. When the tensile tests were ended, the maximum tensile force and displacement values were obtained and the stress and elastic modulus were calculated according to these values. As a result of this study, the welding made using a 3D pen has the maximum elastic modulus and stress values. It has been determined that the lowest strength was obtained in the parts connected with the pin. Compared to the reference model, all connection types resulted in a minimum 37% reduction in component strength. According to the results obtained, the connection type that provides the best strength is the welding connection type made using a 3D printer pen.

Kaynakça

  • 1. Singh, R. and Singh, S., “Fused deposition modelling based rapid patterns for investment casting applications: a review”, Rapid Prototyping Journal, Vol. 22, Issue 1, Pages 123-143, 2016.
  • 2. Tiwary, V.K., P., A. and Malik, V.R., "An overview on joining/welding as post-processing technique to circumvent the build volume limitation of an FDM-3D printer", Rapid Prototyping Journal, Vol. 27, Issue 4, Pages 808-821, 2021.
  • 3. Meraz Trejo, E., Jimenez, X., Billah, K.M.M., Seppala, J., Wicker, R. and Espalin, D., “Compressive deformation analysis of large area pellet-fed material extrusion 3D printed parts in relation to in situ thermal imaging”, Additive Manufacturing, Vol. 33, Pages 1-9, 2020.
  • 4. Spaggiari, A. and Denti, F., “Mechanical strength of adhesively bonded joints using polymeric additive manufacturing”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, Issue 10 Pages 1-9, 2019.
  • 5. Nycz, A., Kishore, V., Lindahl, J., Duty, C., Carnal, C. And Kunc, V., “Controlling substrate temperature with infrared heating to improve mechanical properties of largescale printed parts”, Additive Manufacturing, Vol. 33, Pages 101068, 2020.
  • 6. Dugbenoo, E., Arif, M.F., Wardle, B.L. and Kumar, S., “Enhanced bonding via additive manufacturing-enabled surface tailoring of 3D printed continuous-fiber composites”, Advanced Engineering Materials, Vol. 20, Issue 12, Pages 1-9, 2018.
  • 7. Leicht, H., Orf, L., Hesselbach, J., Vudugula, H., Kraus, E., Baudrit, B., Hochrein, T. and Bastian, M., “Adhesive bonding of 3D-printed plastic components”, The Journal of Adhesion, Vol. 96 Issue 1/4, Pages 48-63, 2020.
  • 8. Yap, Y.L., Toh, W., Koneru, R., Lin, R., Chan, K.I., Guang, H., Chan, W.Y.B., Teong, S.S., Zheng, G. and Ng, T.Y., “Evaluation of structural epoxy and cyanoacrylate adhesives on jointed 3D printed polymeric materials”, International Journal of Adhesion and Adhesives, Vol. 100, Pages 102602, 2020.
  • 9. Kah, P., Suoranta, R., Martikainen, J. and Magnus, C., “Techniques for joining dissimilar materials: metals and polymers”, Reviews on Advanced Materials Science, Vol. 36 Issue 2, Pages 152-164, 2014.
  • 10. Bhudolia, S.K., Gohel, G. Leong, K.F. and Islam, A., “Advances in ultrasonic welding of thermoplastic composites: a review”, Vol. 13, Issue 6, Pages 1284, 2020.
  • 11. Malik, V. and Kailas, S.V., “Understanding the effect of tool geometrical aspects on intensity of mixing and void formation in friction stir process”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, Issue 4, Pages 1-14, 2020.
  • 12. Lambiase, F., Paoletti, A., Grossi, V. and Di Ilio, A., “Analysis of loads, temperatures and welds morphology in FSW of polycarbonate”, Journal of Materials Processing Technology, Vol. 266, Pages 639-650, 2019.
  • 13. Inaniwa, S., Kurabe, Y., Miyashita, Y. and Hori, H., “Application of friction stir welding for several plastic materials” Proceedings of the 1st International Joint Symposium on Joining and Welding, Woodhead Publishing Limited, Vol. 2, 2013.
  • 14. Garcia, R. and Prabhakar, P., “Bond interface design for single lap joints using polymeric additive manufacturing”, Composite Structures, Vol. 176, Pages 547-555, 2017.
  • 15. Huang, Y., Meng, X., Wang, Y., Xie, Y. and Zhou, L., “Joining of aluminum alloy and polymer via friction stir lap welding”, Journal of Materials Processing Technology, Vol. 257, Pages 148-154, 2018.

PARÇALI OLARAK ÜRETİLEN 3 BOYUTLU YAZICI ÇIKTILARINDA KULLANILAN BAĞLANTI TİPLERİNİN MEKANİK AÇIDAN DEĞERLENDİRİLMESİ

Yıl 2022, Cilt: 6 Sayı: 1, 137 - 142, 30.04.2022
https://doi.org/10.46519/ij3dptdi.1050431

Öz

Üç boyutlu (3B) yazıcı teknolojisi, günümüzde sıklıkla tercih edilmeye başlayan, önemli ve popüler teknolojidir. Bu teknoloji gelecekte üretimin farklı alanlarında kullanılabilir olması ile tasarımdaki kısıtlılıklar tamamen ortadan kalkacaktır. Bununla birlikte, 3B yazıcı teknolojisi sınırlı yapı hacmine sahiptir. Bu sebeple, oluşturulan hacim parçalı tasarlanır ve bu parçalar gövdeyi oluşturmak için birbirine bağlanır. Hacimce büyük bir modelin 3B yazıcılardan çıktısını alırken bölümlendirilmiş parçaların bağlantısı çeşitli bağlantı tipleri ile yapılabilmektedir. Bu çalışmanın amacı, 3B yazıcı ile imal edilen parçalı bir üründe kullanılan bağlantı tiplerinin mukavemet açısından değerlendirmek ve en uygun bağlantı tipini belirlemektir. Bu çalışmada, parçaları birbirine bağlamak için dört farklı bağlantı tipi oluşturulmuştur. Bu bağlantı tiplerinin mukavemetini değerlendirmek için standart çekme numunesi tasarımı yapılmış ve bu tasarım ortadan ikiye ayrılarak üretilmiştir. İki parça olarak üretilen çekme numunesi japon yapıştırıcısı (siyanoakrilat), pim, kaynak ve hem kaynak hem de yapıştırıcı (siyanoakrilat) ile birbirine bağlanmıştır. Çekme numunesinin parçalanmamış tek parçalı hali referans numune olarak üretilmiştir. Her grup için yedişer adet üretilen parçalar, üniversal çekme test cihazı ile çekme testine tabi tutulmuştur. Çekme testi sonunda, maksimum çekme kuvveti ve yer değiştirme değerleri elde edilmiş ve bu değerlere göre gerilme, gerinim ve elastik modülleri hesaplanmıştır. Sonuç olarak, 3B kalem kullanılarak yapılan kaynakta en yüksek gerilme ve elastik modül değerleri hesaplanmıştır. Pim ile birbirine bağlanan parçaların en düşük mukavemete sahip olduğu belirlenmiştir. Referans model ile karşılaştırıldığında, tüm bağlantı tipleri parça mukavemetinde minimum %37 azalmaya yol açmıştır. Elde edilen sonuçlara göre, mukavemeti en iyi sağlayan bağlantı tipi 3B yazıcı kalemi kullanılarak yapılan kaynak bağlantı tipidir.

Kaynakça

  • 1. Singh, R. and Singh, S., “Fused deposition modelling based rapid patterns for investment casting applications: a review”, Rapid Prototyping Journal, Vol. 22, Issue 1, Pages 123-143, 2016.
  • 2. Tiwary, V.K., P., A. and Malik, V.R., "An overview on joining/welding as post-processing technique to circumvent the build volume limitation of an FDM-3D printer", Rapid Prototyping Journal, Vol. 27, Issue 4, Pages 808-821, 2021.
  • 3. Meraz Trejo, E., Jimenez, X., Billah, K.M.M., Seppala, J., Wicker, R. and Espalin, D., “Compressive deformation analysis of large area pellet-fed material extrusion 3D printed parts in relation to in situ thermal imaging”, Additive Manufacturing, Vol. 33, Pages 1-9, 2020.
  • 4. Spaggiari, A. and Denti, F., “Mechanical strength of adhesively bonded joints using polymeric additive manufacturing”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, Issue 10 Pages 1-9, 2019.
  • 5. Nycz, A., Kishore, V., Lindahl, J., Duty, C., Carnal, C. And Kunc, V., “Controlling substrate temperature with infrared heating to improve mechanical properties of largescale printed parts”, Additive Manufacturing, Vol. 33, Pages 101068, 2020.
  • 6. Dugbenoo, E., Arif, M.F., Wardle, B.L. and Kumar, S., “Enhanced bonding via additive manufacturing-enabled surface tailoring of 3D printed continuous-fiber composites”, Advanced Engineering Materials, Vol. 20, Issue 12, Pages 1-9, 2018.
  • 7. Leicht, H., Orf, L., Hesselbach, J., Vudugula, H., Kraus, E., Baudrit, B., Hochrein, T. and Bastian, M., “Adhesive bonding of 3D-printed plastic components”, The Journal of Adhesion, Vol. 96 Issue 1/4, Pages 48-63, 2020.
  • 8. Yap, Y.L., Toh, W., Koneru, R., Lin, R., Chan, K.I., Guang, H., Chan, W.Y.B., Teong, S.S., Zheng, G. and Ng, T.Y., “Evaluation of structural epoxy and cyanoacrylate adhesives on jointed 3D printed polymeric materials”, International Journal of Adhesion and Adhesives, Vol. 100, Pages 102602, 2020.
  • 9. Kah, P., Suoranta, R., Martikainen, J. and Magnus, C., “Techniques for joining dissimilar materials: metals and polymers”, Reviews on Advanced Materials Science, Vol. 36 Issue 2, Pages 152-164, 2014.
  • 10. Bhudolia, S.K., Gohel, G. Leong, K.F. and Islam, A., “Advances in ultrasonic welding of thermoplastic composites: a review”, Vol. 13, Issue 6, Pages 1284, 2020.
  • 11. Malik, V. and Kailas, S.V., “Understanding the effect of tool geometrical aspects on intensity of mixing and void formation in friction stir process”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, Issue 4, Pages 1-14, 2020.
  • 12. Lambiase, F., Paoletti, A., Grossi, V. and Di Ilio, A., “Analysis of loads, temperatures and welds morphology in FSW of polycarbonate”, Journal of Materials Processing Technology, Vol. 266, Pages 639-650, 2019.
  • 13. Inaniwa, S., Kurabe, Y., Miyashita, Y. and Hori, H., “Application of friction stir welding for several plastic materials” Proceedings of the 1st International Joint Symposium on Joining and Welding, Woodhead Publishing Limited, Vol. 2, 2013.
  • 14. Garcia, R. and Prabhakar, P., “Bond interface design for single lap joints using polymeric additive manufacturing”, Composite Structures, Vol. 176, Pages 547-555, 2017.
  • 15. Huang, Y., Meng, X., Wang, Y., Xie, Y. and Zhou, L., “Joining of aluminum alloy and polymer via friction stir lap welding”, Journal of Materials Processing Technology, Vol. 257, Pages 148-154, 2018.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Talip Çelik 0000-0003-0033-2454

İbrahim Mutlu 0000-0003-3864-3725

Arif Özkan 0000-0002-1288-6166

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 29 Aralık 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 1

Kaynak Göster

APA Çelik, T., Mutlu, İ., & Özkan, A. (2022). PARÇALI OLARAK ÜRETİLEN 3 BOYUTLU YAZICI ÇIKTILARINDA KULLANILAN BAĞLANTI TİPLERİNİN MEKANİK AÇIDAN DEĞERLENDİRİLMESİ. International Journal of 3D Printing Technologies and Digital Industry, 6(1), 137-142. https://doi.org/10.46519/ij3dptdi.1050431
AMA Çelik T, Mutlu İ, Özkan A. PARÇALI OLARAK ÜRETİLEN 3 BOYUTLU YAZICI ÇIKTILARINDA KULLANILAN BAĞLANTI TİPLERİNİN MEKANİK AÇIDAN DEĞERLENDİRİLMESİ. IJ3DPTDI. Nisan 2022;6(1):137-142. doi:10.46519/ij3dptdi.1050431
Chicago Çelik, Talip, İbrahim Mutlu, ve Arif Özkan. “PARÇALI OLARAK ÜRETİLEN 3 BOYUTLU YAZICI ÇIKTILARINDA KULLANILAN BAĞLANTI TİPLERİNİN MEKANİK AÇIDAN DEĞERLENDİRİLMESİ”. International Journal of 3D Printing Technologies and Digital Industry 6, sy. 1 (Nisan 2022): 137-42. https://doi.org/10.46519/ij3dptdi.1050431.
EndNote Çelik T, Mutlu İ, Özkan A (01 Nisan 2022) PARÇALI OLARAK ÜRETİLEN 3 BOYUTLU YAZICI ÇIKTILARINDA KULLANILAN BAĞLANTI TİPLERİNİN MEKANİK AÇIDAN DEĞERLENDİRİLMESİ. International Journal of 3D Printing Technologies and Digital Industry 6 1 137–142.
IEEE T. Çelik, İ. Mutlu, ve A. Özkan, “PARÇALI OLARAK ÜRETİLEN 3 BOYUTLU YAZICI ÇIKTILARINDA KULLANILAN BAĞLANTI TİPLERİNİN MEKANİK AÇIDAN DEĞERLENDİRİLMESİ”, IJ3DPTDI, c. 6, sy. 1, ss. 137–142, 2022, doi: 10.46519/ij3dptdi.1050431.
ISNAD Çelik, Talip vd. “PARÇALI OLARAK ÜRETİLEN 3 BOYUTLU YAZICI ÇIKTILARINDA KULLANILAN BAĞLANTI TİPLERİNİN MEKANİK AÇIDAN DEĞERLENDİRİLMESİ”. International Journal of 3D Printing Technologies and Digital Industry 6/1 (Nisan 2022), 137-142. https://doi.org/10.46519/ij3dptdi.1050431.
JAMA Çelik T, Mutlu İ, Özkan A. PARÇALI OLARAK ÜRETİLEN 3 BOYUTLU YAZICI ÇIKTILARINDA KULLANILAN BAĞLANTI TİPLERİNİN MEKANİK AÇIDAN DEĞERLENDİRİLMESİ. IJ3DPTDI. 2022;6:137–142.
MLA Çelik, Talip vd. “PARÇALI OLARAK ÜRETİLEN 3 BOYUTLU YAZICI ÇIKTILARINDA KULLANILAN BAĞLANTI TİPLERİNİN MEKANİK AÇIDAN DEĞERLENDİRİLMESİ”. International Journal of 3D Printing Technologies and Digital Industry, c. 6, sy. 1, 2022, ss. 137-42, doi:10.46519/ij3dptdi.1050431.
Vancouver Çelik T, Mutlu İ, Özkan A. PARÇALI OLARAK ÜRETİLEN 3 BOYUTLU YAZICI ÇIKTILARINDA KULLANILAN BAĞLANTI TİPLERİNİN MEKANİK AÇIDAN DEĞERLENDİRİLMESİ. IJ3DPTDI. 2022;6(1):137-42.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.