MALZEME EKSTRÜZYONU İLE ÇALIŞAN 3B YAZICILARDA ÜRETİM SORUNLARI
Yıl 2022,
Cilt: 6 Sayı: 2, 261 - 272, 31.08.2022
Ahmet Fatih Yuran
,
İbrahim Yavuz
Öz
Malzeme ekstrüzyonu; tel halindeki termoplastik hammaddenin hareketli bir nozul yardımıyla baskı tablası üzerinde istenen bölgeye dökülerek üretim yapılan bir yöntemdir. Düşük maliyeti ile malzeme ekstrüzyonu en çok kullanılan eklemeli imalat yöntemi olmakla birlikte, üretim esnasında çok fazla sorunla karşılaşılmaktadır. Malzeme ekstrüzyonunda karşılaşılan üretim sorunları üç boyutlu (3B) yazıcının sahip olduğu donanımları ile ilgilidir. Bunun yanı sıra, üretim sırasında kullanılan yazılımlar, üretim parametreleri ve kullanıcının uzmanlığı gibi nedenlerden kaynaklanan üretim sorunları da bulunmaktadır. Bu çalışmada malzeme ekstrüzyonu yöntemini kullanan 3B yazıcılarda karşılaşılan ekstrüzyon sorunları değerlendirilmiştir. Üretim problemleri düşük maliyetli yazıcılarda daha sık karşılaşılmakla birlikte yüksek maliyetli profesyonel yazıcılarda da önemli bir sorun olarak karşımıza çıkmaktadır. Çalışmada tespit edilen üretim sorunları, malzeme ekstrüzyonu yöntemini kullanan yazıcıların tümü için geçerlidir. 3B yazıcılarda üretim sırasında sık karşılaşılan yirmi bir temel üretim sorunu tespit edilmiştir. Bu sorunlar 3B yazıcılarla yapılan üretim sırasında ürünü fonksiyonel olarak kullanılamaz hale getiren veya üretimi engelleyen sorunlardır. Çalışmada tespit edilen her bir üretim sorunu detaylı görseller ile sunulmuş, sorunun sebeplerine dair bilgiler verilmiş ve çözüm önerileri tavsiye edilmiştir.
Destekleyen Kurum
Afyon Kocatepe Üniversitesi
Proje Numarası
17.FEN.BİL.75
Teşekkür
Bu çalışma Afyon Kocatepe Üniversitesi tarafından 17.FEN.BİL.75 numaralı Bilimsel Araştırma Projesi ile desteklenmiştir.
Kaynakça
- 1. Dilberoglu, U.M., Gharehpapagh B., Yaman U., and Dolen M., “The Role of Additive Manufacturing in the Era of Industry 4.0”, Procedia Manufacturing, Vol. 11, Pages 545–554, 2017.
- 2. Yuran, A. F., Yavuz, İ. “Endüstri 4.0 ve 3 Boyutlu Yazıcıların Karşılaştırılması”, Mühendis ve Makina, Cilt 62, Sayı 704, Sayfa 580-606, 2021.
- 3. Kartal, F., “Taguchi Metodolojisi ile Eriyik Yığma Modelleme Süreci Parametrelerinin Optimizasyonu”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 1, Issue 1, Pages 49–56, 2017.
- 4. Evlen, H., Özdemir M. A., Çalışkan A., “Doluluk Oranlarının PLA ve PET Malzemelerin Mekanik Özellikleri Üzerine Etkileri” Journal of Polytechnic, Vol. 22, Issue 4, Pages 1031–1037, 2019.
- 5. Wang, P., Zou, B., Ding, S., “Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin” Applied Thermal Engineering, Vol. 161, 2019.
- 6. Böğrekci, İ., Demircioğlu P., Sucuoğlu H.S., Turhanlar O., “The Effect of The Infill Type and Density on the Hardness of 3D Printed Parts”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 3, Issue 3, Pages 212–219, 2019.
- 7. Horvath, J., “A Brief History of 3D Printing, Master 3D Printing”, Pages 3–10, Apress, California, 2014.
- 8. Geng, P., Wu, W., Ye, W., Wang, Y., Wang, S., Zhang, S., “Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament”, Journal of Manufacturing Process, Vol. 37, Pages 266–273, 2019.
- 9. Yuran, A. F., Yavuz I., “Effect of Heat Break Geometry on the Thermal Performance of A 3D Printer Extruder”, International Journal of Scientific and Technological Research, Vol. 6, Issue 12, Pages 41–50, 2020.
- 10. Scopigno, R., Cignoni, P., Pietroni, N., Callieri, M., Dellepiane, M., “Digital Fabrication Techniques for Cultural Heritage: A Survey”, Computer Graphics Forum, Vol. 36, Issue 1, Pages 6–21, 2017.
- 11. Aydin, M., Yildirim, F., Çantı, E., Ferdi, H., “Farklı Yazdırma Parametrelerinde PLA Filamentin İşlem Performansının İncelenmesi”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 3, Issue 2, Pages 102–115, 2019.
- 12. Sljivic, M., Pavlovic, A., Ilic, J., Stanojevic, M., Todorovic, S., “Comparing the accuracy of professional and consumer grade 3D printers in complex models production,” FME Transactions, Vol. 45, Issue 3, Pages 348–353, 2017.
- 13. Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, P., Palmer, C., Bowyer, A., “Reprap - The replicating rapid prototyper”, Robotica, Vol. 29, Issue 1, Pages 177–191, 2011.
- 14. Duman, B., Kayacan, M. C., “The defects of STL files which are used in additive manufacturing and their fixing methods”, International Symposium on 3D Printing Technologies (3D-PTS), Pages 156–162, Istanbul, Mayıs, 2016.
- 15. Yardimci, A., Hattori, T., Guceri, S.I., Danforth, S.C., “Thermal analysis of fused deposition”, International Solid FFF Symposium, Pages 689–697, Texas, 1997.
- 16. Tlegenov, Y., Hong, G. S., Lu, W. F., “Nozzle condition monitoring in 3D printing”, Robotics and Computer Integrated Manufacturing, Vol. 54, Pages 45–55, 2018.
- 17. Bhavsar, P., Sharma, B., Moscoso, K.W., Madhavan, V., “Detecting first layer bond quality during FDM 3D printing using discrete wavelet energy approach”, Procedia Manufacturing, Vol. 48, Pages 718-724, 2020.
- 18. Roper, D.M., Kwon, K.A., Best, S.M., Cameron, R.E., “The 3D Printing of Freestanding PLA Thin Layers and Improving First Layer Consistency through Introduction Sacrificial PVA”, Applied Sciences, Vol. 11, Issue 14, Pages 6320, 2021.
- 19. Yu, N., Sun, X., Wang, Z., Zhang, D., Li, J., “Effects of auxiliary heat on warpage and mechanical properties in carbon fiber/ABS composite manufactured by FDM”, Materials & Design, Vol. 195, Pages 108978, 2020.
- 20. Wang, W.M., Zanni, C., Kobbelt, L., “Improved surface quality in 3D printing by optimizing the printing direction”, Computer Graphics Forum, Vol. 35, Issue 2, Pages 59–70, 2016.
- 21. Nuchitprasitchai, S., Roggemann, M., Pearce, J.M., “Factors effecting real-time optical monitoring of fused filament 3D printing”, Progress in Additive Manufacturing, Vol. 2, Issue 3, Pages 133–149, 2017.
- 22. Fernandez, M., Calle, W., Ferrandiz, S., Conejero, A., “Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing”, 3D Printing and Additive Manufacturing, Vol. 3, Pages 183–192, 2016.
- 23. Nienhaus, V., Smith, K., Spiehl, D., Dörsam, E., “Investigations on nozzle geometry in fused filament fabrication”, Additive Manufacturing, Vol. 28, Pages 711 – 718, 2019.
- 24. Kam, M., Saruhan, H., İpekçi, A., “Investigation The Effects Of 3D Printer System Vibrations On Mechanical Properties Of The Printed Products”, Düzce Universites Bilim ve Teknoloji Dergisi, Vol. 7, Issue 2, Pages 109–119, 2019.
- 25. Serdeczny, M.P., Comminal, R., Mollah, M.T., Pedersen, B., Spangenberg, J., “Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing”, Additive Manufacturing, Vol. 36, Pages 101454, 2020.
- 26. Jerez, M.R., Travieso, R.J., Corbella, X., Gómez, G., “Finite element analysis of the thermal behavior of RepRap 3D printer liquefier”, Mechatronics, Vol. 36, Pages 119–126, 2016.
- 27. Güler, B., Çetinkaya, K., “Endüstriyel Boyutlu Çift Başlı Kartezyen Tipi Üç Boyutlu Yazıcı Tasarımı Ve Prototip Üretimi”, International Journal of 3D Printing Technologies and Digital Industry, Vol 2, Issue 2, Pages 11–22, 2018.
- 28. Go, J., Schiffres, S.N., Stevens, A.G., Hart, A.J., “Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design”, Additive Manufacturing, Vol. 16, Pages 1-11, 2017.
- 29. Volpato, N., Zanotto, T.T., “Analysis of deposition sequence in tool-path optimization for low-cost material extrusion additive manufacturing”, The International Journal of Advanced Manufacturing Technology, Vol. 101, Pages 1855 – 1863, 2019.
PRODUCTION PROBLEMS ON MATERIAL EXTRUSION BASED 3D PRINTERS
Yıl 2022,
Cilt: 6 Sayı: 2, 261 - 272, 31.08.2022
Ahmet Fatih Yuran
,
İbrahim Yavuz
Öz
Material extrusion is an additive manufacturing method by melting the wire form thermoplastic material to the desired area on the printing table with the help of a moving nozzle. With its low cost, material extrusion is the most commonly used additive manufacturing method. However, it is one of the most problematic technology due to the faults encountered during production. The slicer software, hardware of the 3D printer, and the production parameters used during production can lead to production problems. In this study, the problems experienced in 3D printers using the material extrusion method were evaluated. The identified problems were classified. Although such production problems are more common in low-cost printers, they are also an important problem in high-cost professional printers. Classified problems in this study can be applied to all 3D printers using the material extrusion method. Twenty-one fundamental production difficulties have been classified. These production problems are the problems that make the product unusable or interrupt production process. Each production problem identified in the study was presented with detailed visuals, comprehensive information given about the causes of the problem, and solution advices suggested.
Proje Numarası
17.FEN.BİL.75
Kaynakça
- 1. Dilberoglu, U.M., Gharehpapagh B., Yaman U., and Dolen M., “The Role of Additive Manufacturing in the Era of Industry 4.0”, Procedia Manufacturing, Vol. 11, Pages 545–554, 2017.
- 2. Yuran, A. F., Yavuz, İ. “Endüstri 4.0 ve 3 Boyutlu Yazıcıların Karşılaştırılması”, Mühendis ve Makina, Cilt 62, Sayı 704, Sayfa 580-606, 2021.
- 3. Kartal, F., “Taguchi Metodolojisi ile Eriyik Yığma Modelleme Süreci Parametrelerinin Optimizasyonu”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 1, Issue 1, Pages 49–56, 2017.
- 4. Evlen, H., Özdemir M. A., Çalışkan A., “Doluluk Oranlarının PLA ve PET Malzemelerin Mekanik Özellikleri Üzerine Etkileri” Journal of Polytechnic, Vol. 22, Issue 4, Pages 1031–1037, 2019.
- 5. Wang, P., Zou, B., Ding, S., “Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin” Applied Thermal Engineering, Vol. 161, 2019.
- 6. Böğrekci, İ., Demircioğlu P., Sucuoğlu H.S., Turhanlar O., “The Effect of The Infill Type and Density on the Hardness of 3D Printed Parts”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 3, Issue 3, Pages 212–219, 2019.
- 7. Horvath, J., “A Brief History of 3D Printing, Master 3D Printing”, Pages 3–10, Apress, California, 2014.
- 8. Geng, P., Wu, W., Ye, W., Wang, Y., Wang, S., Zhang, S., “Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament”, Journal of Manufacturing Process, Vol. 37, Pages 266–273, 2019.
- 9. Yuran, A. F., Yavuz I., “Effect of Heat Break Geometry on the Thermal Performance of A 3D Printer Extruder”, International Journal of Scientific and Technological Research, Vol. 6, Issue 12, Pages 41–50, 2020.
- 10. Scopigno, R., Cignoni, P., Pietroni, N., Callieri, M., Dellepiane, M., “Digital Fabrication Techniques for Cultural Heritage: A Survey”, Computer Graphics Forum, Vol. 36, Issue 1, Pages 6–21, 2017.
- 11. Aydin, M., Yildirim, F., Çantı, E., Ferdi, H., “Farklı Yazdırma Parametrelerinde PLA Filamentin İşlem Performansının İncelenmesi”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 3, Issue 2, Pages 102–115, 2019.
- 12. Sljivic, M., Pavlovic, A., Ilic, J., Stanojevic, M., Todorovic, S., “Comparing the accuracy of professional and consumer grade 3D printers in complex models production,” FME Transactions, Vol. 45, Issue 3, Pages 348–353, 2017.
- 13. Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, P., Palmer, C., Bowyer, A., “Reprap - The replicating rapid prototyper”, Robotica, Vol. 29, Issue 1, Pages 177–191, 2011.
- 14. Duman, B., Kayacan, M. C., “The defects of STL files which are used in additive manufacturing and their fixing methods”, International Symposium on 3D Printing Technologies (3D-PTS), Pages 156–162, Istanbul, Mayıs, 2016.
- 15. Yardimci, A., Hattori, T., Guceri, S.I., Danforth, S.C., “Thermal analysis of fused deposition”, International Solid FFF Symposium, Pages 689–697, Texas, 1997.
- 16. Tlegenov, Y., Hong, G. S., Lu, W. F., “Nozzle condition monitoring in 3D printing”, Robotics and Computer Integrated Manufacturing, Vol. 54, Pages 45–55, 2018.
- 17. Bhavsar, P., Sharma, B., Moscoso, K.W., Madhavan, V., “Detecting first layer bond quality during FDM 3D printing using discrete wavelet energy approach”, Procedia Manufacturing, Vol. 48, Pages 718-724, 2020.
- 18. Roper, D.M., Kwon, K.A., Best, S.M., Cameron, R.E., “The 3D Printing of Freestanding PLA Thin Layers and Improving First Layer Consistency through Introduction Sacrificial PVA”, Applied Sciences, Vol. 11, Issue 14, Pages 6320, 2021.
- 19. Yu, N., Sun, X., Wang, Z., Zhang, D., Li, J., “Effects of auxiliary heat on warpage and mechanical properties in carbon fiber/ABS composite manufactured by FDM”, Materials & Design, Vol. 195, Pages 108978, 2020.
- 20. Wang, W.M., Zanni, C., Kobbelt, L., “Improved surface quality in 3D printing by optimizing the printing direction”, Computer Graphics Forum, Vol. 35, Issue 2, Pages 59–70, 2016.
- 21. Nuchitprasitchai, S., Roggemann, M., Pearce, J.M., “Factors effecting real-time optical monitoring of fused filament 3D printing”, Progress in Additive Manufacturing, Vol. 2, Issue 3, Pages 133–149, 2017.
- 22. Fernandez, M., Calle, W., Ferrandiz, S., Conejero, A., “Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing”, 3D Printing and Additive Manufacturing, Vol. 3, Pages 183–192, 2016.
- 23. Nienhaus, V., Smith, K., Spiehl, D., Dörsam, E., “Investigations on nozzle geometry in fused filament fabrication”, Additive Manufacturing, Vol. 28, Pages 711 – 718, 2019.
- 24. Kam, M., Saruhan, H., İpekçi, A., “Investigation The Effects Of 3D Printer System Vibrations On Mechanical Properties Of The Printed Products”, Düzce Universites Bilim ve Teknoloji Dergisi, Vol. 7, Issue 2, Pages 109–119, 2019.
- 25. Serdeczny, M.P., Comminal, R., Mollah, M.T., Pedersen, B., Spangenberg, J., “Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing”, Additive Manufacturing, Vol. 36, Pages 101454, 2020.
- 26. Jerez, M.R., Travieso, R.J., Corbella, X., Gómez, G., “Finite element analysis of the thermal behavior of RepRap 3D printer liquefier”, Mechatronics, Vol. 36, Pages 119–126, 2016.
- 27. Güler, B., Çetinkaya, K., “Endüstriyel Boyutlu Çift Başlı Kartezyen Tipi Üç Boyutlu Yazıcı Tasarımı Ve Prototip Üretimi”, International Journal of 3D Printing Technologies and Digital Industry, Vol 2, Issue 2, Pages 11–22, 2018.
- 28. Go, J., Schiffres, S.N., Stevens, A.G., Hart, A.J., “Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design”, Additive Manufacturing, Vol. 16, Pages 1-11, 2017.
- 29. Volpato, N., Zanotto, T.T., “Analysis of deposition sequence in tool-path optimization for low-cost material extrusion additive manufacturing”, The International Journal of Advanced Manufacturing Technology, Vol. 101, Pages 1855 – 1863, 2019.