Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 9 - 20, 22.07.2024
https://doi.org/10.54286/ikjm.1378951

Öz

Kaynakça

  • A. Bejancu and H. R. Farran, On the vertical bundle of a pseudo-Finsler manifold, International Journal of Mathematics and Mathematical Sciences, 22(3), (1999) 637-642.
  • A. Bejancu and H. R. Farran, Geometry of pseudo-Finsler submanifolds. Vol. 527, Springer Science and Business Medi, (2013).
  • A. F. Sağlamer, N. Kılıç and N. Çalışkan, Kenmotsu Pseudo-Metric Finsler Structures, Bulletin of Mathematical Analysis and Applications, 11(2), (2019) 12-31.
  • B. B Sinha and R. K. Yadav, 1988. On almost contact Finsler structures on vector bundle, Indian Journal of Pure and Applied Mathematics, 19(1), (1988) 27-35.
  • G. S. Asanov, Finsler Geometry, Relativity and Gauge Theories, Reidel Publication Com. Dordrecht, (1985).
  • J. A. Oubiña, New Class of almost contact metric structure, Publicationes Mathematicae Debrecen, 32, (1985) 187-193.
  • J. K. Beem, Indefinite Finsler spaces and timelike spaces, Canadian Journal of Mathematics, 22(5), (1970) 1035-1039.
  • J. K. Beem and S. S. Chern, Motions in two dimensional indefnite Finsler spaces, Indiana University Mathematics Journal, 21(6), (1971) 551-555.
  • J. K. Beem, Characterizing Finsler spaces which are pseudo-Riemannian of constant curvature, Pacific Journal of Mathematics, 64(1), (1976) 67-77. J. Szilasi, and C. Vincze, A new look at Finsler connections and special Finsler manifolds, Acta Mathematica Academıae Paedagogıcae, 16, (2000) 33-36.
  • K. Kenmotsu, A class of almost contact Riemannian manifolds. Tokohu Mathematical Journal, 24, (1972) 93-103.
  • M. D. Siddiqi, A. N. Siddiqui and O. Bahadır, Generalized Wintgen inequalities for submanifolds of trans-Sasakian space form, Journal of the Mathematical Society of the Philippines, ISSN 0115-6926 (2021) Vol. 44 No. 1 pp. 1-14.
  • M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces. Kaiseisha Press, (1986).
  • P.L. Antonelli, Handbook of Finsler geometry, Vol.2, Springer Science and Business Media, (2003).
  • R. Miron, On Finsler Spaces, Proc. Nat. Semi. 2-Brasov, (1982) 147-188.
  • R. Prasad, U. K. Gautam, J. Prakash and A. K. Rai, On (\varepsilon)−Lorentzian trans-Sasakian manifolds, GANITA, Vol. 69(2), (2019) 15-30.

Trans-Sasakian Manifolds with Pseudo Finsler Metric

Yıl 2024, , 9 - 20, 22.07.2024
https://doi.org/10.54286/ikjm.1378951

Öz

We introduce some properties and results for trans-Sasakian structures on indefinite Finsler manifolds in this paper. These structures are established on the 〖(M^0)〗^h and 〖(M^0)〗^v vector subbundles where M is an (2n+1) dimensional C^∞ manifold, M^0 is a non-empty open submanifold of TM. F^* is the fundamental Finsler function and〖 F〗^(2n+1)= (M,M^0,F^*) is an indefinite Finsler manifold. Furthermore, we give some formulas for α-Sasakian and β-Kenmotsu Finsler manifolds with pseudo-Finsler metric.

Kaynakça

  • A. Bejancu and H. R. Farran, On the vertical bundle of a pseudo-Finsler manifold, International Journal of Mathematics and Mathematical Sciences, 22(3), (1999) 637-642.
  • A. Bejancu and H. R. Farran, Geometry of pseudo-Finsler submanifolds. Vol. 527, Springer Science and Business Medi, (2013).
  • A. F. Sağlamer, N. Kılıç and N. Çalışkan, Kenmotsu Pseudo-Metric Finsler Structures, Bulletin of Mathematical Analysis and Applications, 11(2), (2019) 12-31.
  • B. B Sinha and R. K. Yadav, 1988. On almost contact Finsler structures on vector bundle, Indian Journal of Pure and Applied Mathematics, 19(1), (1988) 27-35.
  • G. S. Asanov, Finsler Geometry, Relativity and Gauge Theories, Reidel Publication Com. Dordrecht, (1985).
  • J. A. Oubiña, New Class of almost contact metric structure, Publicationes Mathematicae Debrecen, 32, (1985) 187-193.
  • J. K. Beem, Indefinite Finsler spaces and timelike spaces, Canadian Journal of Mathematics, 22(5), (1970) 1035-1039.
  • J. K. Beem and S. S. Chern, Motions in two dimensional indefnite Finsler spaces, Indiana University Mathematics Journal, 21(6), (1971) 551-555.
  • J. K. Beem, Characterizing Finsler spaces which are pseudo-Riemannian of constant curvature, Pacific Journal of Mathematics, 64(1), (1976) 67-77. J. Szilasi, and C. Vincze, A new look at Finsler connections and special Finsler manifolds, Acta Mathematica Academıae Paedagogıcae, 16, (2000) 33-36.
  • K. Kenmotsu, A class of almost contact Riemannian manifolds. Tokohu Mathematical Journal, 24, (1972) 93-103.
  • M. D. Siddiqi, A. N. Siddiqui and O. Bahadır, Generalized Wintgen inequalities for submanifolds of trans-Sasakian space form, Journal of the Mathematical Society of the Philippines, ISSN 0115-6926 (2021) Vol. 44 No. 1 pp. 1-14.
  • M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces. Kaiseisha Press, (1986).
  • P.L. Antonelli, Handbook of Finsler geometry, Vol.2, Springer Science and Business Media, (2003).
  • R. Miron, On Finsler Spaces, Proc. Nat. Semi. 2-Brasov, (1982) 147-188.
  • R. Prasad, U. K. Gautam, J. Prakash and A. K. Rai, On (\varepsilon)−Lorentzian trans-Sasakian manifolds, GANITA, Vol. 69(2), (2019) 15-30.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Makaleler
Yazarlar

Ayşe Funda Sağlamer

Hilal Fidan

Erken Görünüm Tarihi 28 Nisan 2024
Yayımlanma Tarihi 22 Temmuz 2024
Gönderilme Tarihi 26 Ekim 2023
Kabul Tarihi 19 Şubat 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Sağlamer, A. F., & Fidan, H. (2024). Trans-Sasakian Manifolds with Pseudo Finsler Metric. Ikonion Journal of Mathematics, 6(1), 9-20. https://doi.org/10.54286/ikjm.1378951
AMA Sağlamer AF, Fidan H. Trans-Sasakian Manifolds with Pseudo Finsler Metric. ikjm. Temmuz 2024;6(1):9-20. doi:10.54286/ikjm.1378951
Chicago Sağlamer, Ayşe Funda, ve Hilal Fidan. “Trans-Sasakian Manifolds With Pseudo Finsler Metric”. Ikonion Journal of Mathematics 6, sy. 1 (Temmuz 2024): 9-20. https://doi.org/10.54286/ikjm.1378951.
EndNote Sağlamer AF, Fidan H (01 Temmuz 2024) Trans-Sasakian Manifolds with Pseudo Finsler Metric. Ikonion Journal of Mathematics 6 1 9–20.
IEEE A. F. Sağlamer ve H. Fidan, “Trans-Sasakian Manifolds with Pseudo Finsler Metric”, ikjm, c. 6, sy. 1, ss. 9–20, 2024, doi: 10.54286/ikjm.1378951.
ISNAD Sağlamer, Ayşe Funda - Fidan, Hilal. “Trans-Sasakian Manifolds With Pseudo Finsler Metric”. Ikonion Journal of Mathematics 6/1 (Temmuz 2024), 9-20. https://doi.org/10.54286/ikjm.1378951.
JAMA Sağlamer AF, Fidan H. Trans-Sasakian Manifolds with Pseudo Finsler Metric. ikjm. 2024;6:9–20.
MLA Sağlamer, Ayşe Funda ve Hilal Fidan. “Trans-Sasakian Manifolds With Pseudo Finsler Metric”. Ikonion Journal of Mathematics, c. 6, sy. 1, 2024, ss. 9-20, doi:10.54286/ikjm.1378951.
Vancouver Sağlamer AF, Fidan H. Trans-Sasakian Manifolds with Pseudo Finsler Metric. ikjm. 2024;6(1):9-20.