Araştırma Makalesi
BibTex RIS Kaynak Göster

ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES

Yıl 2019, Cilt: 1 Sayı: 1, 18 - 25, 18.01.2019

Öz

In this paper we introduce some geometrical and topological properties of
weighted Lebesgue sequence spaces 𝑙𝑝,𝑤 as a generalization of the Lebesgue
sequences spaces 𝑙𝑝 , where 𝑤 a weighted sequence.

Kaynakça

  • Agarwal, R. P. and O'Regan, D. and Sagu, D. R. (2009) Fixed Point for Lipschitziantype Mapping with Applications. Springer Science Business Media, New York.
  • Castillo, R. E. and Rafeiro, H. (2016) An Intorductory Course in Lebesgue Spaces. Springer International Publishing, Switzerland.
  • Carother's, N. L. 2005. A Short Course on Banach Spaces Theory. Cambridge University Press, Cambridge.
  • Clarkson, J., 1936. Uniformly Convex Spaces, Trans. Amer. Math. Soc., 40(3): 396-414.
  • Mitronovic, D.S. , Pecaric, J.E. and Fink, A.M. 1993. Classical and New Inequalities in Analysis. Kluver Academic Publishers.
  • Nesin, A. 2012. Analiz 2. Nesin Yayıncılık.
  • Oğur, O. 2018. Some Geometric Properties of Weighted Lebesgue Spaces L_{p,w}(G), Facta Universitatis, Series: Mathematics and Informatics, In press.
  • Yeh, J. 2006. Real Analysis: Theory of Measure and Integration (Second Edition). World Scientific Publishing.
  • Lashkaripour, R. 1997. Lower Bounds and Norms of Operators on Lorentz Sequence Spaces. Doctoral Dissertation. Lancaster.
  • Popa, N. 1981. Basic Sequences and Subspaces in Lorentz Sequence Spaces without Local Convexity. Transactions of the American Mathematical Society, vol 263, no:2, pp 431-456.
  • Savaş, E., Karakaya, V., Şimşek, N. 2009. Some l(p)-type New Sequence Spaces and Their Geometric Properties . Abstract and Applied Analysis, Article ID 696971, 12 pages doi:10.1155/2009/696971.
Yıl 2019, Cilt: 1 Sayı: 1, 18 - 25, 18.01.2019

Öz

Kaynakça

  • Agarwal, R. P. and O'Regan, D. and Sagu, D. R. (2009) Fixed Point for Lipschitziantype Mapping with Applications. Springer Science Business Media, New York.
  • Castillo, R. E. and Rafeiro, H. (2016) An Intorductory Course in Lebesgue Spaces. Springer International Publishing, Switzerland.
  • Carother's, N. L. 2005. A Short Course on Banach Spaces Theory. Cambridge University Press, Cambridge.
  • Clarkson, J., 1936. Uniformly Convex Spaces, Trans. Amer. Math. Soc., 40(3): 396-414.
  • Mitronovic, D.S. , Pecaric, J.E. and Fink, A.M. 1993. Classical and New Inequalities in Analysis. Kluver Academic Publishers.
  • Nesin, A. 2012. Analiz 2. Nesin Yayıncılık.
  • Oğur, O. 2018. Some Geometric Properties of Weighted Lebesgue Spaces L_{p,w}(G), Facta Universitatis, Series: Mathematics and Informatics, In press.
  • Yeh, J. 2006. Real Analysis: Theory of Measure and Integration (Second Edition). World Scientific Publishing.
  • Lashkaripour, R. 1997. Lower Bounds and Norms of Operators on Lorentz Sequence Spaces. Doctoral Dissertation. Lancaster.
  • Popa, N. 1981. Basic Sequences and Subspaces in Lorentz Sequence Spaces without Local Convexity. Transactions of the American Mathematical Society, vol 263, no:2, pp 431-456.
  • Savaş, E., Karakaya, V., Şimşek, N. 2009. Some l(p)-type New Sequence Spaces and Their Geometric Properties . Abstract and Applied Analysis, Article ID 696971, 12 pages doi:10.1155/2009/696971.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Kabul edilmiş makaleler
Yazarlar

Birsen Sağır

İrem Alaşalvar Bu kişi benim

Yayımlanma Tarihi 18 Ocak 2019
Kabul Tarihi 24 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 1 Sayı: 1

Kaynak Göster

APA Sağır, B., & Alaşalvar, İ. (2019). ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES. Ikonion Journal of Mathematics, 1(1), 18-25.
AMA Sağır B, Alaşalvar İ. ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES. ikjm. Ocak 2019;1(1):18-25.
Chicago Sağır, Birsen, ve İrem Alaşalvar. “ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES”. Ikonion Journal of Mathematics 1, sy. 1 (Ocak 2019): 18-25.
EndNote Sağır B, Alaşalvar İ (01 Ocak 2019) ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES. Ikonion Journal of Mathematics 1 1 18–25.
IEEE B. Sağır ve İ. Alaşalvar, “ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES”, ikjm, c. 1, sy. 1, ss. 18–25, 2019.
ISNAD Sağır, Birsen - Alaşalvar, İrem. “ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES”. Ikonion Journal of Mathematics 1/1 (Ocak 2019), 18-25.
JAMA Sağır B, Alaşalvar İ. ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES. ikjm. 2019;1:18–25.
MLA Sağır, Birsen ve İrem Alaşalvar. “ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES”. Ikonion Journal of Mathematics, c. 1, sy. 1, 2019, ss. 18-25.
Vancouver Sağır B, Alaşalvar İ. ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES. ikjm. 2019;1(1):18-25.