In this paper we introduce some geometrical and topological properties of
weighted Lebesgue sequence spaces 𝑙𝑝,𝑤 as a generalization of the Lebesgue
sequences spaces 𝑙𝑝 , where 𝑤 a weighted sequence.
Agarwal, R. P. and O'Regan, D. and Sagu, D. R. (2009) Fixed Point for Lipschitziantype Mapping with Applications. Springer Science Business Media, New York.
Castillo, R. E. and Rafeiro, H. (2016) An Intorductory Course in Lebesgue Spaces. Springer International Publishing, Switzerland.
Carother's, N. L. 2005. A Short Course on Banach Spaces Theory. Cambridge University Press, Cambridge.
Mitronovic, D.S. , Pecaric, J.E. and Fink, A.M. 1993. Classical and New Inequalities in Analysis. Kluver Academic Publishers.
Nesin, A. 2012. Analiz 2. Nesin Yayıncılık.
Oğur, O. 2018. Some Geometric Properties of Weighted Lebesgue Spaces L_{p,w}(G), Facta Universitatis, Series: Mathematics and Informatics, In press.
Yeh, J. 2006. Real Analysis: Theory of Measure and Integration (Second Edition). World Scientific Publishing.
Lashkaripour, R. 1997. Lower Bounds and Norms of Operators on Lorentz Sequence Spaces. Doctoral Dissertation. Lancaster.
Popa, N. 1981. Basic Sequences and Subspaces in Lorentz Sequence Spaces without Local Convexity. Transactions of the American Mathematical Society, vol 263, no:2, pp 431-456.
Savaş, E., Karakaya, V., Şimşek, N. 2009. Some l(p)-type New Sequence Spaces and Their Geometric Properties . Abstract and Applied Analysis, Article ID 696971, 12 pages doi:10.1155/2009/696971.
Agarwal, R. P. and O'Regan, D. and Sagu, D. R. (2009) Fixed Point for Lipschitziantype Mapping with Applications. Springer Science Business Media, New York.
Castillo, R. E. and Rafeiro, H. (2016) An Intorductory Course in Lebesgue Spaces. Springer International Publishing, Switzerland.
Carother's, N. L. 2005. A Short Course on Banach Spaces Theory. Cambridge University Press, Cambridge.
Mitronovic, D.S. , Pecaric, J.E. and Fink, A.M. 1993. Classical and New Inequalities in Analysis. Kluver Academic Publishers.
Nesin, A. 2012. Analiz 2. Nesin Yayıncılık.
Oğur, O. 2018. Some Geometric Properties of Weighted Lebesgue Spaces L_{p,w}(G), Facta Universitatis, Series: Mathematics and Informatics, In press.
Yeh, J. 2006. Real Analysis: Theory of Measure and Integration (Second Edition). World Scientific Publishing.
Lashkaripour, R. 1997. Lower Bounds and Norms of Operators on Lorentz Sequence Spaces. Doctoral Dissertation. Lancaster.
Popa, N. 1981. Basic Sequences and Subspaces in Lorentz Sequence Spaces without Local Convexity. Transactions of the American Mathematical Society, vol 263, no:2, pp 431-456.
Savaş, E., Karakaya, V., Şimşek, N. 2009. Some l(p)-type New Sequence Spaces and Their Geometric Properties . Abstract and Applied Analysis, Article ID 696971, 12 pages doi:10.1155/2009/696971.