The harmonic iindex of graph $G$ is defined as the sum
$H(G)=\sum\limits_{ij\in E(G)}\frac{2}{d_{G}(i)+d_{G}(j)}$, where $d_{G}(i)$ is the degree of a vertex $i$ in $G$. In this paper we examined eccentric version of harmonic index of graphs.
Referans1 Doslic, T. (2008) Vertex weighted Wiener polynomials for composite graphs. Ars Mathematica Contemporanea, 1; 66--80.
Referans2 Ediz, S., Farahani, M. R. and Imran, M. (2017) On novel harmonic indices of certain nanotubes. International Journal of Advanced Biotechnology and Research, 8(4); 277--282.
Referans3 Fajtlowicz, S. (1987) On conjectures of graffiti II. Congressus Numerantium, 60; 189-–197.
Referans4 Ghorbani, M. and Hosseinzade, M.A. (2012) A new version of Zagreb indices. Filomat, 26; 93–-100.
Referans5 Gross, J.L. and Yellen, J. (2004) Handbook of graph theory, Chapman Hall, CRC Press.
Referans6 Gupta, S., Singh, M. and Madan, A.K.(2000) Connective eccentricity index: a novel topological descriptor for predicting biological activity. Journal of Molecular Graphics and Modelling, 18; 18–-25.
Referans7 Gutman, I. and Trinajstic, N. (1972) Graph Theory and Molecular Orbitals. Total pi-Electron Energy of Alternant Hydrocarbons. Chemical Physics Letters, 17: 535--538.
Referans8 Gutman, I., Ruscic, B., Trinajsti\'{c}, N. and Wilkox, C.F. (1975) Graph Theory and Molecular Orbitals. XII. Acyclic Polyenes. The Journal of Chemical Physics, 62(9):3399--3405.
Referans10 Radon, J. (1913) Uber die absolut additiven Mengenfunktionen. Wiener Sitzungsber, 122; 1295--1438.
Referans11 Sharma, V., Goswami, R. and Madan, A.K. (1997) Eccentric connectivity index: A novel highly discriminating topological descriptor for structure property and structure-activity studies. Journal of Chemical Information and Modeling, 37(2); 273--282.
Referans12 Vukicevic, D. and Graovac, A. (2010) Note on the comparison of the first and second normalized Zagreb eccentricity indices. Acta Chimica Slovenica, 57; 524–-528.
Referans13 Zhou, B. and Du, Z. (2010) On Eccentric Connectivity Index. MATCH Communications in Mathematical and in Computer Chemistry, 63; 181--198.
Referans1 Doslic, T. (2008) Vertex weighted Wiener polynomials for composite graphs. Ars Mathematica Contemporanea, 1; 66--80.
Referans2 Ediz, S., Farahani, M. R. and Imran, M. (2017) On novel harmonic indices of certain nanotubes. International Journal of Advanced Biotechnology and Research, 8(4); 277--282.
Referans3 Fajtlowicz, S. (1987) On conjectures of graffiti II. Congressus Numerantium, 60; 189-–197.
Referans4 Ghorbani, M. and Hosseinzade, M.A. (2012) A new version of Zagreb indices. Filomat, 26; 93–-100.
Referans5 Gross, J.L. and Yellen, J. (2004) Handbook of graph theory, Chapman Hall, CRC Press.
Referans6 Gupta, S., Singh, M. and Madan, A.K.(2000) Connective eccentricity index: a novel topological descriptor for predicting biological activity. Journal of Molecular Graphics and Modelling, 18; 18–-25.
Referans7 Gutman, I. and Trinajstic, N. (1972) Graph Theory and Molecular Orbitals. Total pi-Electron Energy of Alternant Hydrocarbons. Chemical Physics Letters, 17: 535--538.
Referans8 Gutman, I., Ruscic, B., Trinajsti\'{c}, N. and Wilkox, C.F. (1975) Graph Theory and Molecular Orbitals. XII. Acyclic Polyenes. The Journal of Chemical Physics, 62(9):3399--3405.
Referans10 Radon, J. (1913) Uber die absolut additiven Mengenfunktionen. Wiener Sitzungsber, 122; 1295--1438.
Referans11 Sharma, V., Goswami, R. and Madan, A.K. (1997) Eccentric connectivity index: A novel highly discriminating topological descriptor for structure property and structure-activity studies. Journal of Chemical Information and Modeling, 37(2); 273--282.
Referans12 Vukicevic, D. and Graovac, A. (2010) Note on the comparison of the first and second normalized Zagreb eccentricity indices. Acta Chimica Slovenica, 57; 524–-528.
Referans13 Zhou, B. and Du, Z. (2010) On Eccentric Connectivity Index. MATCH Communications in Mathematical and in Computer Chemistry, 63; 181--198.