Araştırma Makalesi
BibTex RIS Kaynak Göster

SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS

Yıl 2019, Cilt: 1 Sayı: 1, 11 - 17, 18.01.2019

Öz

The harmonic iindex of graph $G$ is defined as the sum
$H(G)=\sum\limits_{ij\in E(G)}\frac{2}{d_{G}(i)+d_{G}(j)}$, where $d_{G}(i)$ is the degree of a vertex $i$ in $G$. In this paper we examined eccentric version of harmonic index of graphs.

Kaynakça

  • Referans1 Doslic, T. (2008) Vertex weighted Wiener polynomials for composite graphs. Ars Mathematica Contemporanea, 1; 66--80.
  • Referans2 Ediz, S., Farahani, M. R. and Imran, M. (2017) On novel harmonic indices of certain nanotubes. International Journal of Advanced Biotechnology and Research, 8(4); 277--282.
  • Referans3 Fajtlowicz, S. (1987) On conjectures of graffiti II. Congressus Numerantium, 60; 189-–197.
  • Referans4 Ghorbani, M. and Hosseinzade, M.A. (2012) A new version of Zagreb indices. Filomat, 26; 93–-100.
  • Referans5 Gross, J.L. and Yellen, J. (2004) Handbook of graph theory, Chapman Hall, CRC Press.
  • Referans6 Gupta, S., Singh, M. and Madan, A.K.(2000) Connective eccentricity index: a novel topological descriptor for predicting biological activity. Journal of Molecular Graphics and Modelling, 18; 18–-25.
  • Referans7 Gutman, I. and Trinajstic, N. (1972) Graph Theory and Molecular Orbitals. Total pi-Electron Energy of Alternant Hydrocarbons. Chemical Physics Letters, 17: 535--538.
  • Referans8 Gutman, I., Ruscic, B., Trinajsti\'{c}, N. and Wilkox, C.F. (1975) Graph Theory and Molecular Orbitals. XII. Acyclic Polyenes. The Journal of Chemical Physics, 62(9):3399--3405.
  • Referans9 Mitrinovic, D.S. (1970) Analytic Inequalities, Springer.
  • Referans10 Radon, J. (1913) Uber die absolut additiven Mengenfunktionen. Wiener Sitzungsber, 122; 1295--1438.
  • Referans11 Sharma, V., Goswami, R. and Madan, A.K. (1997) Eccentric connectivity index: A novel highly discriminating topological descriptor for structure property and structure-activity studies. Journal of Chemical Information and Modeling, 37(2); 273--282.
  • Referans12 Vukicevic, D. and Graovac, A. (2010) Note on the comparison of the first and second normalized Zagreb eccentricity indices. Acta Chimica Slovenica, 57; 524–-528.
  • Referans13 Zhou, B. and Du, Z. (2010) On Eccentric Connectivity Index. MATCH Communications in Mathematical and in Computer Chemistry, 63; 181--198.
Yıl 2019, Cilt: 1 Sayı: 1, 11 - 17, 18.01.2019

Öz

Kaynakça

  • Referans1 Doslic, T. (2008) Vertex weighted Wiener polynomials for composite graphs. Ars Mathematica Contemporanea, 1; 66--80.
  • Referans2 Ediz, S., Farahani, M. R. and Imran, M. (2017) On novel harmonic indices of certain nanotubes. International Journal of Advanced Biotechnology and Research, 8(4); 277--282.
  • Referans3 Fajtlowicz, S. (1987) On conjectures of graffiti II. Congressus Numerantium, 60; 189-–197.
  • Referans4 Ghorbani, M. and Hosseinzade, M.A. (2012) A new version of Zagreb indices. Filomat, 26; 93–-100.
  • Referans5 Gross, J.L. and Yellen, J. (2004) Handbook of graph theory, Chapman Hall, CRC Press.
  • Referans6 Gupta, S., Singh, M. and Madan, A.K.(2000) Connective eccentricity index: a novel topological descriptor for predicting biological activity. Journal of Molecular Graphics and Modelling, 18; 18–-25.
  • Referans7 Gutman, I. and Trinajstic, N. (1972) Graph Theory and Molecular Orbitals. Total pi-Electron Energy of Alternant Hydrocarbons. Chemical Physics Letters, 17: 535--538.
  • Referans8 Gutman, I., Ruscic, B., Trinajsti\'{c}, N. and Wilkox, C.F. (1975) Graph Theory and Molecular Orbitals. XII. Acyclic Polyenes. The Journal of Chemical Physics, 62(9):3399--3405.
  • Referans9 Mitrinovic, D.S. (1970) Analytic Inequalities, Springer.
  • Referans10 Radon, J. (1913) Uber die absolut additiven Mengenfunktionen. Wiener Sitzungsber, 122; 1295--1438.
  • Referans11 Sharma, V., Goswami, R. and Madan, A.K. (1997) Eccentric connectivity index: A novel highly discriminating topological descriptor for structure property and structure-activity studies. Journal of Chemical Information and Modeling, 37(2); 273--282.
  • Referans12 Vukicevic, D. and Graovac, A. (2010) Note on the comparison of the first and second normalized Zagreb eccentricity indices. Acta Chimica Slovenica, 57; 524–-528.
  • Referans13 Zhou, B. and Du, Z. (2010) On Eccentric Connectivity Index. MATCH Communications in Mathematical and in Computer Chemistry, 63; 181--198.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Kabul edilmiş makaleler
Yazarlar

Yaşar Nacaroğlu

Yayımlanma Tarihi 18 Ocak 2019
Kabul Tarihi 21 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 1 Sayı: 1

Kaynak Göster

APA Nacaroğlu, Y. (2019). SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS. Ikonion Journal of Mathematics, 1(1), 11-17.
AMA Nacaroğlu Y. SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS. ikjm. Ocak 2019;1(1):11-17.
Chicago Nacaroğlu, Yaşar. “SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS”. Ikonion Journal of Mathematics 1, sy. 1 (Ocak 2019): 11-17.
EndNote Nacaroğlu Y (01 Ocak 2019) SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS. Ikonion Journal of Mathematics 1 1 11–17.
IEEE Y. Nacaroğlu, “SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS”, ikjm, c. 1, sy. 1, ss. 11–17, 2019.
ISNAD Nacaroğlu, Yaşar. “SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS”. Ikonion Journal of Mathematics 1/1 (Ocak 2019), 11-17.
JAMA Nacaroğlu Y. SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS. ikjm. 2019;1:11–17.
MLA Nacaroğlu, Yaşar. “SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS”. Ikonion Journal of Mathematics, c. 1, sy. 1, 2019, ss. 11-17.
Vancouver Nacaroğlu Y. SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS. ikjm. 2019;1(1):11-7.