Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 4 Sayı: 2, 12 - 20, 31.12.2022
https://doi.org/10.54286/ikjm.1160312

Öz

Kaynakça

  • Akgüneş, N., Ç evik, A.S., A new bound of radius of irregularity index, Appl. Math. Comput. 219 (2013), 5750-5753.
  • Akgüneş, N., Das, K. C., Ç evik, A. S., Topological indices on a graph of monogenic semigroups in Topics in Chemical Graph Theory, Mathematical Chemistry Monographs, I. Gutman, Ed., University of Kragujevac and Faculty of Science Kragujevac, Kragujevac, Serbia, (2014).
  • Akgüneş, N., Çağan, B., On the dot product of graphs over monogenic semigroups, Applied Mathematics and Computation, 322, (2018) 1-5.
  • Akgüneş, N., A further note on the graph of monogenic semigroups, Konuralp Journal of Mathematics, 6(1), (2018) 49-53.
  • Albertson, M. O., The irregularity of a graph, Ars Combinatoria, 46, (1997) 219-225.
  • Alikhani, S., Ghanbari, N., Sombor index of polymers, MATCH Commun. Math. Comput. Chem. 86 (2021) 715-728.
  • Amin, S., Rehman Virk, A. U., Rehman, M. A., Shah, N. A., Analysis of dendrimer generation by Sombor indices, Hindawi Journal of Chemistry (2021) #9930645.
  • Anderson, DD, Naseer, M, Beck’s coloring of a commutative ring, J. Algebra 159, (1991), 500-514.
  • Anderson, D.F., Livingston, P., The Zero-divisor Graph of Commutative Ring, Journal of Algebra 217, (1999), 434-447.
  • Anderson, D.F., Badawi, A., On the Zero-Divisor Graph of a Ring Communications in Algebra 36(8), (2008), 3073-3092.
  • Beck, I., Coloring of Commutating Rings, J. Algebra, Neue Folge, Vol. 116, (1988), 208-226.
  • Cruz, R., Gutman, I., Rada, J., Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021) #126018.
  • Das, K. C., Akgüneş N., Çevik, A.S., On a graph of monogenic semigroup, J. Ineq. Appl., 44, (2013).
  • Das, K. C., Çevik, A. S., Cangül, I. N., Shang, Y., On Sombor index, Symmetry, 13, (2021), Art 140.
  • DeMeyer, F.R., DeMeyer, L., Zero-Divisor Graphs of Semigroups, J. Algebra, 283, (2005), 190-198.
  • DeMeyer, F.R., McKenzie, T., Schneider, K., The Zero-Divisor Graph of a Commutative Semigroup, Semigroup Forum, 65, (2002), 206-214.
  • Devillers, J., Balaban A. T.(Eds), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, (1999).
  • Gutman, I., Geometric approach to degree-based topological indices: Sombor indices , MATCH Commun. Math. Comput. Chem. 86 (2021), 11-16.
  • Gutman, I., Spectrum and energy of the Sombor matrix, Military Technical Courier 69 (2021), 551-561.
  • Gutman, I., Some basic properties of Sombor indices, Open J. Discr. Appl. Math. 4 (2021) 1–3.
  • Horoldagva, B., Xu, C., On Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 86 (2021) 793-713.
  • Liu, H., You, L., Huang, Y., Ordering chemical graphs by Sombor indices and its applications, MATCH Commun. Math. Comput. Chem. 87 (2022), 5–22.
  • Liu, H.; Gutman, I.; You, L.; Huang, Y. Sombor index: review of extremal results and bounds. J. Math. Chem. 2022, 66, 771–798.
  • Milovanovic, I., Milovanovic, E., Ali, A., M. Matejic, Some results on the Sombor indices of graphs, Contrib. Math. 3 (2021) 59-67.
  • Oğuz Ünal, S. An application of Sombor index over a special class of semigroup graph. J. Math. 2021, 3273117.
  • Oğuz Ünal, S. Sombor index over the tensor and Cartesian product of monogenic semigroup graphs. Symmetry, 14(5), 2021, #1071.
  • Rada, J., Rodr´ıguez, J. M., Sigarreta, J. M., General properties on Sombor indices, Discrete Appl. Math. 299 (2021) 87-97.
  • Redzepovic, I., Chemical applicability of Sombor indices, J. Serb. Chem. Soc. 86 (2021) 445-457.
  • Reti, T., Doslic, T., Ali, A., On the Sombor index of graphs, Contrib. Math. 3 (2021) 11-18.
  • Doslic, T., Reti, T., Ali, A., On the structure of graphs with integer Sombor indices, Discrete Math. Lett. 7(2021) 1-4.
  • Shang, Y. Sombor index and degree-related properties of simplicial networks. Appl. Math. Comput. 2022, 419, 126881.
  • Todeschini, R., Consonni, V., Molecular Descriptors for Chemoinformatics Wiley VCH. Weinheim (2009).
  • West, D.B. An Introduction to Graph Theory; Prentice-Hall: Upper Saddle River, NJ, USA, 1996.

On Vertex-Degree-Based Indices of Monogenic Semigroup Graphs

Yıl 2022, Cilt: 4 Sayı: 2, 12 - 20, 31.12.2022
https://doi.org/10.54286/ikjm.1160312

Öz

Albertson and the reduced Sombor indices are vertex-degree-based graph invariants that given in [5] and [18], defined as

Alb(G)=\sum_{uv\in E(G)}\left|d_{u}-d_{v}\right|, SO_{red}(G)=\sum_{uv\in E(G)}\sqrt{(d_{u}-1)^{2}+(d_{v}-1)^{2}},

respectively.

In this work we show that a calculation of Albertson and reduced Sombor index which are vertex-degree-based topological indices, over monogenic semigroup graphs.

Kaynakça

  • Akgüneş, N., Ç evik, A.S., A new bound of radius of irregularity index, Appl. Math. Comput. 219 (2013), 5750-5753.
  • Akgüneş, N., Das, K. C., Ç evik, A. S., Topological indices on a graph of monogenic semigroups in Topics in Chemical Graph Theory, Mathematical Chemistry Monographs, I. Gutman, Ed., University of Kragujevac and Faculty of Science Kragujevac, Kragujevac, Serbia, (2014).
  • Akgüneş, N., Çağan, B., On the dot product of graphs over monogenic semigroups, Applied Mathematics and Computation, 322, (2018) 1-5.
  • Akgüneş, N., A further note on the graph of monogenic semigroups, Konuralp Journal of Mathematics, 6(1), (2018) 49-53.
  • Albertson, M. O., The irregularity of a graph, Ars Combinatoria, 46, (1997) 219-225.
  • Alikhani, S., Ghanbari, N., Sombor index of polymers, MATCH Commun. Math. Comput. Chem. 86 (2021) 715-728.
  • Amin, S., Rehman Virk, A. U., Rehman, M. A., Shah, N. A., Analysis of dendrimer generation by Sombor indices, Hindawi Journal of Chemistry (2021) #9930645.
  • Anderson, DD, Naseer, M, Beck’s coloring of a commutative ring, J. Algebra 159, (1991), 500-514.
  • Anderson, D.F., Livingston, P., The Zero-divisor Graph of Commutative Ring, Journal of Algebra 217, (1999), 434-447.
  • Anderson, D.F., Badawi, A., On the Zero-Divisor Graph of a Ring Communications in Algebra 36(8), (2008), 3073-3092.
  • Beck, I., Coloring of Commutating Rings, J. Algebra, Neue Folge, Vol. 116, (1988), 208-226.
  • Cruz, R., Gutman, I., Rada, J., Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021) #126018.
  • Das, K. C., Akgüneş N., Çevik, A.S., On a graph of monogenic semigroup, J. Ineq. Appl., 44, (2013).
  • Das, K. C., Çevik, A. S., Cangül, I. N., Shang, Y., On Sombor index, Symmetry, 13, (2021), Art 140.
  • DeMeyer, F.R., DeMeyer, L., Zero-Divisor Graphs of Semigroups, J. Algebra, 283, (2005), 190-198.
  • DeMeyer, F.R., McKenzie, T., Schneider, K., The Zero-Divisor Graph of a Commutative Semigroup, Semigroup Forum, 65, (2002), 206-214.
  • Devillers, J., Balaban A. T.(Eds), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, (1999).
  • Gutman, I., Geometric approach to degree-based topological indices: Sombor indices , MATCH Commun. Math. Comput. Chem. 86 (2021), 11-16.
  • Gutman, I., Spectrum and energy of the Sombor matrix, Military Technical Courier 69 (2021), 551-561.
  • Gutman, I., Some basic properties of Sombor indices, Open J. Discr. Appl. Math. 4 (2021) 1–3.
  • Horoldagva, B., Xu, C., On Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 86 (2021) 793-713.
  • Liu, H., You, L., Huang, Y., Ordering chemical graphs by Sombor indices and its applications, MATCH Commun. Math. Comput. Chem. 87 (2022), 5–22.
  • Liu, H.; Gutman, I.; You, L.; Huang, Y. Sombor index: review of extremal results and bounds. J. Math. Chem. 2022, 66, 771–798.
  • Milovanovic, I., Milovanovic, E., Ali, A., M. Matejic, Some results on the Sombor indices of graphs, Contrib. Math. 3 (2021) 59-67.
  • Oğuz Ünal, S. An application of Sombor index over a special class of semigroup graph. J. Math. 2021, 3273117.
  • Oğuz Ünal, S. Sombor index over the tensor and Cartesian product of monogenic semigroup graphs. Symmetry, 14(5), 2021, #1071.
  • Rada, J., Rodr´ıguez, J. M., Sigarreta, J. M., General properties on Sombor indices, Discrete Appl. Math. 299 (2021) 87-97.
  • Redzepovic, I., Chemical applicability of Sombor indices, J. Serb. Chem. Soc. 86 (2021) 445-457.
  • Reti, T., Doslic, T., Ali, A., On the Sombor index of graphs, Contrib. Math. 3 (2021) 11-18.
  • Doslic, T., Reti, T., Ali, A., On the structure of graphs with integer Sombor indices, Discrete Math. Lett. 7(2021) 1-4.
  • Shang, Y. Sombor index and degree-related properties of simplicial networks. Appl. Math. Comput. 2022, 419, 126881.
  • Todeschini, R., Consonni, V., Molecular Descriptors for Chemoinformatics Wiley VCH. Weinheim (2009).
  • West, D.B. An Introduction to Graph Theory; Prentice-Hall: Upper Saddle River, NJ, USA, 1996.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Seda Oğuz Ünal

Erken Görünüm Tarihi 31 Aralık 2022
Yayımlanma Tarihi 31 Aralık 2022
Kabul Tarihi 13 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 2

Kaynak Göster

APA Oğuz Ünal, S. (2022). On Vertex-Degree-Based Indices of Monogenic Semigroup Graphs. Ikonion Journal of Mathematics, 4(2), 12-20. https://doi.org/10.54286/ikjm.1160312
AMA Oğuz Ünal S. On Vertex-Degree-Based Indices of Monogenic Semigroup Graphs. ikjm. Aralık 2022;4(2):12-20. doi:10.54286/ikjm.1160312
Chicago Oğuz Ünal, Seda. “On Vertex-Degree-Based Indices of Monogenic Semigroup Graphs”. Ikonion Journal of Mathematics 4, sy. 2 (Aralık 2022): 12-20. https://doi.org/10.54286/ikjm.1160312.
EndNote Oğuz Ünal S (01 Aralık 2022) On Vertex-Degree-Based Indices of Monogenic Semigroup Graphs. Ikonion Journal of Mathematics 4 2 12–20.
IEEE S. Oğuz Ünal, “On Vertex-Degree-Based Indices of Monogenic Semigroup Graphs”, ikjm, c. 4, sy. 2, ss. 12–20, 2022, doi: 10.54286/ikjm.1160312.
ISNAD Oğuz Ünal, Seda. “On Vertex-Degree-Based Indices of Monogenic Semigroup Graphs”. Ikonion Journal of Mathematics 4/2 (Aralık 2022), 12-20. https://doi.org/10.54286/ikjm.1160312.
JAMA Oğuz Ünal S. On Vertex-Degree-Based Indices of Monogenic Semigroup Graphs. ikjm. 2022;4:12–20.
MLA Oğuz Ünal, Seda. “On Vertex-Degree-Based Indices of Monogenic Semigroup Graphs”. Ikonion Journal of Mathematics, c. 4, sy. 2, 2022, ss. 12-20, doi:10.54286/ikjm.1160312.
Vancouver Oğuz Ünal S. On Vertex-Degree-Based Indices of Monogenic Semigroup Graphs. ikjm. 2022;4(2):12-20.