Araştırma Makalesi
BibTex RIS Kaynak Göster

Ders İmecesi (Lesson Study) Mesleki Gelişim Modeli: Öğretmen Adaylarının Fark Etme Becerilerinin İncelenmesi

Yıl 2017, Cilt: 16 Sayı: 2, 428 - 452, 01.04.2017
https://doi.org/10.17051/ilkonline.2017.304709

Öz

Bu çalışmanın amacı ders imecesi (lesson study) mesleki gelişim modelinin uygulanma sürecinde öğretmen adaylarının öğrencilerin matematiksel düşünmelerini fark etme becerilerini incelemek ve adayların bu modelin planlama aşamasında kullanımına yönelik görüşlerini sunmaktır. Bu kapsamda, araştırmanın çalışma grubunu, 2014-2015 eğitim öğretim yılında, ilköğretim matematik öğretmenliği programının son sınıfında öğrenim gören dört öğretmen adayı oluşturmaktadır. Nitel araştırma yöntemlerinden durum çalışmasının kullanıldığı bu araştırmada veri toplama araçlarını görüşme, gözlem, alan notları ve süreç içinde elde edilen yazılı dökümanlar oluşturmaktadır. Öğretmen adaylarının öğrencilerin matematiksel düşünmelerini fark etme becerilerini yorumlamak için Van Es (2011) tarafından geliştirilen dört düzeyden oluşan bir teorik çerçeveden faydalanılmıştır. Elde edilen bulgular, ders imecesi (lesson study) modelinin uygulanması sürecinde öğretmen adaylarının öğrencilerin matematiksel düşünmelerine yönelik fark etme düzeylerinin düşük olduğunu, adayların bu mesleki gelişim modelinin kullanımına yönelik gösüşlerinin olumlu olduğunu ve ders imecesi modelinin (lesson study) pek çok açıdan farkındalıklarını arttırdığını göstermektedir. 

Anahtar Kelimeler: Ders imecesi (lesson study), fark etme, kesirler, öğretmen adayları

Kaynakça

  • Ball, D. L. (1997). What do students know? Facing challenges of distance, context, and desire in trying to hear children. In B. J. Biddle, T. L. Good, & I. F. Goodson (Eds.), International handbook of teachers and teaching (pp. 769-818). Dordrecht, Netherlands: Kluwer Academic Publishers.
  • Ball, D. L., & Cohen, D. K. (1999). Developing practice, developing practitioners: Toward a practice-based theory of professional education. In L. DarlingHammond & G. Sykes (Eds.), Teaching as the learning profession: Handbook of policy and practice (pp. 3-32). San Francisco, CA: Jossey-Bass Inc.
  • Berliner, D. C. (1994). Expertise: The wonder of exemplary performances. In J. M. Mangier & C. C. Block (Eds.), Creating powerful thinking in teachers and students: Diverse perspectives (pp. 161-186). Fort Worth, TX: Holt, Rinehart, & Winston.
  • Berliner, D. C., Stein, P., Sabers, D. S., Clarridge, P. B., Cushing, K. S., & Pinnegar, S (1988). Implications of research on pedagogical expertise and experience in mathematics teaching. In D. A. Grouws & T. J. Cooney (Eds.), Perspectives on research on effective mathematics teaching (pp. 67–95). Reston, VA: National Council of Teachers of Mathematics.
  • Borko, H., Jacobs, J., Eiteljorg, E., & Pittman, M. E. (2008). Video as a tool for fostering productive discussions in mathematics professional development.Teaching and Teacher Education, 24(2), 417–436.
  • Chamberlin, M. T. (2002). Teacher investigations of students’ work: The evolution of teachers’ social processes and interpretations of students’ thinking, Unpublished doctoral dissertation, Purdue University, Indiana.
  • Chamberlin, M. T. (2005). Teachers‟ discussions of students‟ thinking: Meeting the challenge of attending to students‟ thinking. Journal of Mathematics Teacher Education, 8, 141-170.
  • Carpenter, T. P., Fennema, E., & Frank, M. L. (1996). Cognitively guided instruction: A knowledge base for reform in primary mathematics instruction. The Elementary School Journal, 97(1), 3-20.
  • Carter, K., Cushing, K. S., Sabers, D. S., Stein, P., & Berliner, D. C. (1988). Expert– novice differences in perceiving and processing visual classroom information. Journal of Teacher Education, 39, 25–31.
  • Creswell, J. W. (1998). Qualitative inquiry and research design: Choosing among five traditions. Thousand Oaks, CA: Sage.
  • Darling-Hammond, L. (2003). Teacher learning that supports student learning. In A. Ornstein, L. S. Behar-Horenstein, & E. Pajak (Eds.), Contemporary issues in curriculum (pp. 277-282). Boston: Pearson Education.
  • Eraslan, A. (2008). Japanese Lesson Study: Can it work in Turkey? Education andScience, 33(149), 62-67.
  • Frederiksen, J. R. (1992). Learning to "see':· Scoring video portfolios or "beyond the hunter-gatherer in performance assessment. Paper presented at the Annual Meeting of the American Educational Research Association, San Francisco.
  • Garet, M., Porter, A., Desimone, L., Birman, B., & Yoon, K. (2001). What makes professional development effective? Resultsfrom a national sample of teachers. American Educational Research Journal, 38(3), 915-945.
  • Goldsmith, L. T., & Seago, N. (2011). Using classroom artifacts to focus teachers’ noticing: Affordances and opportunities. In M. G. Sherin, V. R. Jacobs, & R. A. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers’ eyes (pp. 169-187). New York: Routledge.
  • Gurl, T. (2009). An analysis of an adaptation of lesson study with preservice secondary mathematics teachers, Phd Dissertation. Columbia University.
  • Hand, V. (2012). Seeing culture and power in mathematical learning: Toward a model of equitable instruction. Educational Studies in Mathematics, 80(1–2), 233–247. doi:10.1007/s10649-012-9387-9.
  • Harle, B. C. (2008). The lesson study professional development process: exploring the learning experiences of elementary and middle school teachers, Phd Dissertation. The University of Texas at Austin.
  • Hawley, D. W., & Valli, L. (1999). The essentials of effective professional development: A new consensus. In D. L. Hammond & H. G. Sykes (Eds.), Teaching as the learning profession: Handbook o f policy and practice (Chapter 5). San Francisco, CA: Jossey-Bass.
  • Jacobs, V. R., Lamb, L. L. C., & Philipp, R. A. (2010). Professional noticing of children’s math-ematical thinking. Journal for Research in Mathematics Education, 41(2), 169–202.
  • Jacobs, V. R., Lamb, L. L. C., Philipp, R. A., & Schappelle, B. P. (2011). Deciding how to respond on the basis of children’s understandings. In M. G. Sherin, V. R. Jacobs, & R. A. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers’ eyes (pp. 97–116). New York: Routledge.
  • Katrancı, M., (2008). The levels of coordinators and practicum teachers' fulfilment of their duties and responsibilities in practicum studies, Master dissertation, Kırıkkale University.
  • Kazemi, E., & Franke, M. L. (2004). Teacher learning in mathematics: Using student work to promote collective inquiry. Journal of Mathematics Teacher Education, 7, 203-235.
  • Kennedy, M. M. (1999). The role of preservice teacher education. In l. darlinghammond & G. Sykes (eds.), Teaching as the learning profession: Handbook of teaching and policy (pp. 54-86). San Francisco: Jossey Bass.
  • Koellner-Clark, K., & Lesh, R. (2003). A modeling approach to describe teacher knowledge. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 159-174). Mahwah, NJ: Lawrence Erlbaum Associates Inc.
  • Leinhardt, G., & Greeno. J. (1986). The cognitive skill of teaching. Journal of Educational Psychology, 78(2), 75-95.
  • Lewis, C. (2002). Lesson study: A handbook of teacher-led instructional change. Philadelphia: Research for Better Schools.
  • Lewis, C. C. & Tsuchida, I. (1998). A lesson is like a swiftly flowing river. American Educator, Winter, 12-17, 50-52.
  • Masingila, J. O., & Doerr, H. M. (2002). Understanding pre-service teachers’ emerging practices through their analyses of a multimedia case study of practice. Journal of Mathematics Teacher Education, 5(3), 235–263.
  • Mason, J. (2002). Researching your own practice: From noticing to reflection. London: Routledge Falmer.
  • Mason, J. (2008). Being mathematical with and in front of learners: Attention, awareness, and attitude as sources of difference between teacher educators, teachers and learners. In B. Jaworski & T. Wood (Eds.), Handbook of mathematics teacher education: Vol. 4. The Mathematics teacher educator as a developing professional (pp. 31–56). Rotterdam, The Netherlands: Sense.
  • Mason, J. (2011). Noticing: Roots and branches. In B. Jaworski & T. Wood (Eds.), Handbook of mathematics teacher education: Vol. 4. The Mathematics teacher educator as a developing professional (pp.35–50). Rotterdam, The Netherlands: Sense.
  • McDuffie, A. R., Foote M. Q., Bolson, C., Turner, E. E., Aguirre, J. M., Bartell, T. G. Drake, J. & Land T. (2014). Journal of Mathematics Teacher Education, 17, 245–270.
  • Miller, K. F. (2011). Situation awareness in teaching. In M. G. Sherin, V. R. Jacobs, & R. A. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers’ eyes (pp. 51–65). New York: Routledge.
  • National Council of Teachers of Mathematics (NCTM).(2000). Learning mathematics for a new century (2000 Yearbook). Reston,VA: Author.
  • Oliveira, H., & Hannula, M. S. (2008). Individual prospective mathematics teachers: Studies on their professional growth. In K. Krainer & T. Wood (Eds.), International handbook of math-ematics teacher education (Vol. 3, pp. 13–34). Boston: Sense.
  • Paker, T. (2008). Problems of student teachers regarding the feedback of university supervisors and mentors during teaching practice. The Journal of Pamukkale Education Faculty, 1 (23).
  • Philipp R. A. (2014). Commentary on section 3: Research on teachers’ focusing on children’s thinking in learning to teach: teacher noticing and learning trajectories. In J. Cai & J. Middleton (Eds) Research Trends in Mathematics Teacher Education (pp.285-293). Newyork: Springer.
  • Resnick, I. B. (1987). Education and Learning to Think. Washington, D.C.: National Academy Press.
  • Santagata, R., Zannoni, C., & Stigler, J. W. (2007). The role of lesson analysis in pre-service teacher education: An empirical investigation of teacher learning from a virtual video-based field experience. Journal of Mathematics Teacher Education, 10(2), 123–140.
  • Sherin, M. G., & Han, S. Y. (2004). Teacher learning in the context of a video club. Teaching and Teacher Education, 20, 163-183.
  • Sherin, M. G., & van Es, E. A. (2005). Using video to support teachers’ ability to interpret classroom interactions. Journal of Technology and Teacher Education, 13, 475–491.
  • Sherin, M. G., & van Es, E. A. (2009). Effects of video club participation on teachers‟ Professional vision. Journal of Teacher Education, 60(1), 20-37.
  • Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (Eds.). (2011). Mathematics teacher noticing: Seeing through teachers’ eyes. New York: Taylor and Francis.
  • Smith, R. R., (2008). LESSON study: Professional development for empowering teachers and improving classroom practice, Phd dissertation, Florida State University.
  • Star, J., Lynch, K., & Perova, N. (2011). Using video to improve preservice mathematics teachers' abilities to attend to classroom features. In M. Sherin, V. Jacobs, & R. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers' eyes (pp. 117e133). New York, NY: Routledge.
  • Stigler, J. & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: The Free Press.
  • Sowder, J. T. (2007). The mathematical education and development of teachers. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 157-223). Charlotte, NC: Information Age Publishing.
  • Star, J., & Strickland, S. (2008). Learning to observe: Using video to improve preservice mathematics teachers’ ability to notice. Journal of Mathematics Teacher Education, 11, 107–125.
  • van Es, E. A. (2011). A framework for learning to notice student thinking. In M. Sherin, V. Jacobs, & R. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers’ eyes (pp. 134–151). New York: Routledge.
  • van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations of classroom interactions. Journal of Technology and Teacher Education, 10(4), 571–596.
  • van Es, E. A., & Sherin, M. G. (2008). Mathematics teachers‟ “learning to notice” in the context of a video club. Teaching and Teacher Education, 24, 244–276.
  • van Es, E.A., & Sherin, M.G. (2010). The influence of video clubs on teachers’ thinking and practice. Journal of Mathematics Teacher Education, 13(2), 155-176.
  • Yoshida, M. (1999). Lesson study: A case study of a Japanese approach to improving instruction through school-based teacher development. Unpublished dissertation, University of Chicago.
  • Yoshida, M. & Jackson, W., C. (2011). Ideas for developing mathematical pedagogical content knowledge through lesson study. In L, C, Hart., A. Alston ve A. Murata (Eds.), Lesson Study Research And Practice in Mathematics Education (pp, 279-288), Dordrecht, The Netherlands: Springer.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makaleleri
Yazarlar

Pınar Güner

Didem Akyüz

Yayımlanma Tarihi 1 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 16 Sayı: 2

Kaynak Göster

APA Güner, P., & Akyüz, D. (2017). Ders İmecesi (Lesson Study) Mesleki Gelişim Modeli: Öğretmen Adaylarının Fark Etme Becerilerinin İncelenmesi. İlköğretim Online, 16(2), 428-452. https://doi.org/10.17051/ilkonline.2017.304709
AMA Güner P, Akyüz D. Ders İmecesi (Lesson Study) Mesleki Gelişim Modeli: Öğretmen Adaylarının Fark Etme Becerilerinin İncelenmesi. İOO. Nisan 2017;16(2):428-452. doi:10.17051/ilkonline.2017.304709
Chicago Güner, Pınar, ve Didem Akyüz. “Ders İmecesi (Lesson Study) Mesleki Gelişim Modeli: Öğretmen Adaylarının Fark Etme Becerilerinin İncelenmesi”. İlköğretim Online 16, sy. 2 (Nisan 2017): 428-52. https://doi.org/10.17051/ilkonline.2017.304709.
EndNote Güner P, Akyüz D (01 Nisan 2017) Ders İmecesi (Lesson Study) Mesleki Gelişim Modeli: Öğretmen Adaylarının Fark Etme Becerilerinin İncelenmesi. İlköğretim Online 16 2 428–452.
IEEE P. Güner ve D. Akyüz, “Ders İmecesi (Lesson Study) Mesleki Gelişim Modeli: Öğretmen Adaylarının Fark Etme Becerilerinin İncelenmesi”, İOO, c. 16, sy. 2, ss. 428–452, 2017, doi: 10.17051/ilkonline.2017.304709.
ISNAD Güner, Pınar - Akyüz, Didem. “Ders İmecesi (Lesson Study) Mesleki Gelişim Modeli: Öğretmen Adaylarının Fark Etme Becerilerinin İncelenmesi”. İlköğretim Online 16/2 (Nisan 2017), 428-452. https://doi.org/10.17051/ilkonline.2017.304709.
JAMA Güner P, Akyüz D. Ders İmecesi (Lesson Study) Mesleki Gelişim Modeli: Öğretmen Adaylarının Fark Etme Becerilerinin İncelenmesi. İOO. 2017;16:428–452.
MLA Güner, Pınar ve Didem Akyüz. “Ders İmecesi (Lesson Study) Mesleki Gelişim Modeli: Öğretmen Adaylarının Fark Etme Becerilerinin İncelenmesi”. İlköğretim Online, c. 16, sy. 2, 2017, ss. 428-52, doi:10.17051/ilkonline.2017.304709.
Vancouver Güner P, Akyüz D. Ders İmecesi (Lesson Study) Mesleki Gelişim Modeli: Öğretmen Adaylarının Fark Etme Becerilerinin İncelenmesi. İOO. 2017;16(2):428-52.

Cited By







Examining Pre-Service Mathematics Teachers’ Noticing Skills
Turkish Journal of Computer and Mathematics Education (TURCOMAT)
Berna Tataroğlu Taşdan
https://doi.org/10.16949/turkbilmat.451136