Araştırma Makalesi
BibTex RIS Kaynak Göster

The use of biofertilizer contribution to plant development and yield in greenhouse broccoli cultivation

Yıl 2024, Cilt: 8 Sayı: 3, 531 - 540, 29.09.2024
https://doi.org/10.31015/jaefs.2024.3.6

Öz

In this study, the effects of chemical fertilizers and fertilizers containing microorganisms on broccoli yield were examined. It is aimed to reduce the amount of chemical fertilizer by using microorganisms. Mundo F1 Broccoli variety was used as plant material. The research was established according to the randomized block trial design with 3 treatments and 3 replications, and 20 plants were used in each replication. Applications: 1. Control: 100% chemical fertilization (U1), 2. Treatment II: 70% chemical fertilization + Microorganisms (U2), 3. Treatment II: 100% chemical fertilization + Microorganisms (U3). The aim of the study is the effects of chemical fertilizers and microorganisms on plant growth and development; To examine the effect of plant height, stem diameter, number of leaves and yield. It was concluded that the number of leaves, plant height and stem diameter generally increased in the plots where microorganisms were applied. When the results were evaluated in terms of yield compared to the control treatment, U2 treatment increased yield by 20% and U1 treatment increased yield by 15%.

Kaynakça

  • Akgül, D. S., & Mirik, M. (2008). Biocontrol of Phytophthora capsici on pepper plants by Bacillus megaterium strains. Journal of plant pathology, 90(1), 29-34.
  • Altuntaş, Ö. (2018). A comparative study on the effects of different conventional, organic and bio-fertilizers on broccoli yield and quality. Applied ecology & environmental research, 16(2).
  • Anonymous, (2017). FAO, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security, FAO: Rome, Italy, 2017.
  • Anonymous, (2018). FAO, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World 2018: Building Climatic Resilience for Food Securityand Nutrition, Food and Agriculture Organization of the United Nations: Rome, Italy.
  • Arisha, H. M., & Bradisi, A. (1999). Effect of mineral fertilizers and organic fertilizers on growth, yield and quality of potato under sandy soil conditions. Zagazig journal of agricultural research, 26, 391-405.
  • Arora, M., Saxena, P., Abdin, M., Varma, A. (2018). Interaction between Piriformospora indica and Azotobacter chroococcum governs better plant physiological and biochemical parameters in Artemisia annua L. plants grown under in vitro conditions. Symbiosis, 75, 103–112.
  • Aslantaş, R., Çakmakçi, R., & Şahin, F. (2007). Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Scientia horticulturae, 111(4), 371-377.
  • Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology letters, 32, 1559-1570.
  • Badr, L.A.A., & Fekry, W.A. (1998). Effect of intercropping and doses of fertilization on growth and productivity of taro and cucumber plants. 1- vegetative growth and chemical constituents of foliage. Zagazig journal of agricultural research. 25, 1087-101.
  • Bar-Ness, E., Hadar, Y., Chen, Y., Romheld, V., & Marschner, H. (1992). Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant physiology, 100(1), 451-456.
  • Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied microbiology and biotechnology, 84(1), 11-18.
  • Brahmaprakash, G. P., Sahu, P. K., Lavanya, G., Nair, S. S., Gangaraddi, V. K., & Gupta, A. (2017). Microbial functions of the rhizosphere. Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 1: Fundamental Mechanisms, Methods and Functions, 177-210.
  • Caballero-Mellado, J., Onofre-Lemus, J., Estrada-De Los Santos, P., & Martínez-Aguilar, L. (2007). The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Applied and environmental microbiology, 73(16),5308-5319.
  • Çakmakçı, R., Erat, M., Erdoğan, Ü., & Dönmez, M. F. (2007a). The influence of plant growth–promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of plant nutrition and soil science, 170(2), 288-295.
  • Cakmakci, R., Dönmez, M. F., & Erdoğan, Ü. (2007b). The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish journal of agriculture and forestry, 31(3), 189-199.
  • Cakmakci, R., Erat, M., Oral, B., Erdogan, Ü., & Șahin, F. (2009). Enzyme activities and growth promotion of spinach by indole-3-acetic acid-producing rhizobacteria. The journal of horticultural science and Biotechnology, 84(4), 375–380. https://doi.org/10.1080/14620316.2009.11512535
  • Canbolat, M. Y., Bilen, S., Aydın, A., Çakmakçı, R., & Şahin, F. (2006). Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology and fertility of soils, 42(4), 350-357.
  • Chabot, R., Antoun, H., & Cescas, M. P. (1996). Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Biology and fertility of soils, 21(4), 365-369.
  • Chauhan, H., & Bagyaraj, D. J. (2015). Inoculation with selected microbial consortia not only enhances growth and yield of French bean but also reduces fertilizer application under field condition. Scientia Horticulturae, 197, 441-446.
  • Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied soil ecology, 34(1), 33-41.
  • Choudhary, S., & Paliwal, R. (2017). Effect of bio-organics and mineral nutrients on yield, quality and economics of sprouting broccoli (Brassica oleracea var. italica). International journal of current microbiology applied sciences, 6(12), 742-749.
  • Cruz, C., Lips, S. H., & Martins‐Loução, M. A. (1993). Interactions between nitrate and ammonium during uptake by carob seedlings and the effect of the form of earlier nitrogen nutrition. Physiologia plantarum, 89(3), 544-551.
  • Dauda, S. N., Ajayi, F. A., & Ndor, E. (2009). Growth and yield of water melon (Citrullus lanatus) as affected by poultry manure application. Electronic journal of environmental, agricultural and food chemistry, 8(4), 305-311.
  • Dicko, A. H., Babana, A. H., Kassogué, A., Fané, R., Nantoumé, D., Ouattara, D., & Dao, S. (2018). A Malian native plant growth promoting Actinomycetes based biofertilizer improves maize growth and yield. Symbiosis, 75, 267-275.
  • Enebe, M. C., & Babalola, O. O. (2018). The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Applied microbiology and biotechnology, 102, 7821-7835.
  • Esitken, A., Ercisli, S., & Eken, C. (2005). Effects of mycorrhiza isolates on symbiotic germination of terrestrial orchids (Orchis palustris Jacq. and Serapias vomeracea subsp. vomeracea (Burm. f.) Briq.) in Turkey. Symbiosis, 38(1), 59-68.
  • Fathi, A. (2017). Effect of phosphate solubilization microorganisms and plant growth promoting rhizobacteria on yield and yield components of corn. Scientia agriculturae, 18(3), 66-69.
  • Fuentes-Ramirez, L., & Caballero-Mellado, J. (2006). Bacterial Biofertilizers. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and Biofertilization (pp. 143-172). Springer-Verlag.
  • Glaser, B., & Lehr, V.I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific reports, 9(1), 9338.
  • Grover, M., Ali, S. Z., Sandhya, V., Rasul, A., & Venkateswarlu, B. (2011). Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World journal of microbiology and biotechnology, 27, 1231-1240.
  • Hassen, A. I., Bopape, F. L., & Sanger, L. K. (2016). Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. Microbial Inoculants in sustainable agricultural productivity: Vol. 1: research perspectives, 23-36.
  • Itelima, J. U., Bang, W. J., Onyimba, I. A., Sila, M. D., & Egbere, O. J. (2018). Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review.
  • Kamal, N., Liu, Z., Qian, C., Wu, J., & Zhong, X. (2021). Improving hybrid Pennisetum growth and cadmium phytoremediation potential by using Bacillus megaterium BM18-2 spores as biofertilizer. Microbiological research, 242, 126594.
  • Karaçal, İ. & Tüfenkçi, Ş. (2019). New Approaches to Plant Nutrition and Fertilizer-Environment Relationship. (In Turkish) http://www.zmo.org.tr.
  • Khalid, M., Hassani, D., Bilal, M., Asad, F., & Huang, D. (2017). Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of Spinacia oleracea L. Botanical studies, 58, 1-9.
  • Lucy, M., Reed, E., & Glick, B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek, 86(1), 1-25.
  • Madhaiyan, M., Poonguzhali, S., Lee, J. S., Lee, K. C., & Hari, K. (2006). Influence of pesticides on the growth rate and plant-growth-promoting traits of Gluconacetobacter diazotrophicus. Pesticide biochemistry and physiology, 84(2), 143-154.
  • Malik, F. R., Ahmed, S., & Rizki, Y. M. (2001). Utilization of lignocellulosic waste for the preparation of nitrogenous biofertilizer. Pakistan journal of biological sciences, 4(10), 1217-1220.
  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant science, 166(2), 525-530.
  • Mishra, P. K., Mishra, S., Selvakumar, G., Bisht, J. K., Kundu, S., & Gupta, H. S. (2009). Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World journal of microbiology and biotechnology, 25(5), 753-761.
  • Olanrewaju, O. S., Ayangbenro, A. S., Glick, B. R., & Babalola, O. O. (2019). Plant health: feedback effect of root exudates-rhizobiome interactions. Applied microbiology and biotechnology, 103, 1155-1166.
  • Ortas, I. & Lal, R. (2011).Climate Change and Food Security in West Asia. In International Conference on Adaptation to Climate Change and Food Security in West Asia and North Africa Kuwait City, Kuwai.
  • Panda, S.C. (2011). Organic Farming for Sustainable Agriculture, 3rd ed., Kalyani Publishers: New Delhi, India,.
  • Rather, A. M., Jabeen, N., Bhat, T. A., Parray, E. A., Hajam, M. A., Wani, M. A., & Bhat, I. A. (2018). Effect of organic manures and bio-fertilizers on growth and yield of lettuce. The Pharma innovation, 7(5, Part B), 75.
  • Roberson, E. B., & Firestone, M. K. (1992). Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Applied and environmental microbiology, 58(4), 1284-1291.
  • Rodríguez, A. A., Stella, A. M., Storni, M. M., Zulpa, G., & Zaccaro, M. C. (2006). Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline systems, 2, 1-4.
  • Rodrı́guez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances, 17(4-5), 319-339.
  • Sagoe, C. I., Ando, T., Kouno, K., & Nagaoka, T. (1998). Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids. Soil science and plant nutrition, 44(4), 617-625.
  • Sandhya, V., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant growth regulation, 58(2), 157-167.
  • Saxena, A.K., Lata Shende, R., & Pandey, A.K. (2005). Of plant growth promoting rhizobacteria. In: Basic research applications of mycorrhizae. (Eds) Gopi, K.P, Varma, A. I K International Pvt Ltd, New Delhi, pp 453– 474.
  • Selvakumar, G., Kundu, S., Gupta, A. D., Shrivastava, A. K., & Gupta, H. S. (2008). Isolation and characterization of nonrhizobial plant growth-promoting bacteria from nodules of kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Current microbiology, 56(2), 134-139.
  • Singh, A., Maji, S., & Kumar, S. (2014). Effect of biofertilizers on yield and biomolecules of anti-cancerous vegetable broccoli. International journal of bio-resource and stress management, 5(2), 262-268.
  • Sinha, R.K., Valani, D., Chauhan, K. & Agarwal S. (2014). Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin”. İnternational journal of agriculture and biology,1,50–64.
  • Sivakumar, T., Ravikumar, M. & Prakash, M. (2013). Thamizhmani R. Comparative effect on bacterial biofertilizers on growth and yield of green gram (Phaseolus radiata L.) and cow pea (Vigna siensis Edhl.). International journal of current research and academic review, 1(2), 20-28.
  • Srivastava, S., Gadasalli, S., Agarwal, S., & Aggarwal, R. (2008). Anesthetic management of a parturient with dissecting thoracic aortic aneurysm. Journal of anaesthesiology clinical pharmacology, 24(3), 345-347.
  • Şahin, F., Cakmakci, R., & Kantar, F. (2004). Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant and soil, 265(1-2), 123-129.
  • Taiz, L., & Zeiger, E. (2002). Plant Physiology (Third Edition). Sinauer Associates, Inc., Publishers, Sunderland, 67-86.
  • Tisdall, J. M., & Oades, J. M. (1982). Organic Matter and Water-Stable Aggregates in Soils. European journal of soil science, 33, 141-163.
  • Tošić, I., Golić, Z. & Radosavac, A. (2016). Effects of the application of biofertilizers on the microflora and yield of lettuce (Lactuca sativa L.). Acta agriculturae serbica, 21, 91–98.
  • Upadhyay, A., Hwang, S. J., Mitchell, G. F., Vasan, R. S., Vita, J. A., Stantchev, P. I. & Benjamin, E. J. (2009). Arterial stiffness in mild to moderate CKD. Journal of the american society of nephrology, 20(9), 2044-2053.
  • Valverde, J., Reilly, K., Villacreces, S., Gaffney, M., Grant, J. & Brunton, N. (2015). Variation in bioactive content in broccoli (Brassica oleracea var. italica) grown under conventional and organic production systems. Journal of the science of food and agriculture, 95 (6),163-1171.
  • Verma, D. K., Pandey, A. K., Mohapatra, B., Srivastava, S., Kumar, V., Talukdar, D., & Asthir, B. (2019). Plant growth-promoting rhizobacteria: An eco-friendly approach for sustainable agriculture and improved crop production. In Microbiology for sustainable agriculture, soil health, and environmental protection (pp. 3-80). Apple academic press.
  • Vessey, J.K. (2003). Plant growth promoting Rhizobacteria as biofertilizers. Plant soil , 255, 571–586.
  • Wilsion, L. T. (2006). Cyanobacteria: a potential nitrogen source in rice fields. Texas rice, 6(1), 9-10.
  • Win, K. T., Okazaki, K., Ookawa, T., Yokoyama, T., & Ohwaki, Y. (2019). Influence of rice-husk biochar and Bacillus pumilus strain TUAT-1 on yield, biomass production, and nutrient uptake in two forage rice genotypes. PLoS One, 14(7), e0220236.
  • Yadav, K. K. & Smritikana Sarkar, S. S. (2019). Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Environment and ecology, 37, 89–93.
  • Yanni, Y. G., Rizk, R. Y., Abd El-Fattah, F. K., Squartini, A., Corich, V., Giacomini, A. & De Bruijn, F. J. (1997). The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Australian journal of plant physiology, 24(2), 241-249.
  • Yildirim, E., Turan, M., Ekinci, M., Dursun, A. & Cakmakci, R. (2011). Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Scientific research and essays, 6, 4389–4396.
  • Yu, C., Huang, X., Chen, H., Godfray, H. C. J., Wright, J. S., Hall, J. W. & Taylor, J. (2019). Managing nitrogen to restore water quality in China. Nature, 567 (7749), 516-520.
  • Zahir, A.Z., Arshad, M. & Frankenberger W.T. (2004). Plant growth promoting rhizobacteria: applica tions and perspectives in agriculture. Advances in agronomy, 81:97–168.
  • Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S., & Imran, A. (2021). Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological research, 242, 126626.
Yıl 2024, Cilt: 8 Sayı: 3, 531 - 540, 29.09.2024
https://doi.org/10.31015/jaefs.2024.3.6

Öz

Kaynakça

  • Akgül, D. S., & Mirik, M. (2008). Biocontrol of Phytophthora capsici on pepper plants by Bacillus megaterium strains. Journal of plant pathology, 90(1), 29-34.
  • Altuntaş, Ö. (2018). A comparative study on the effects of different conventional, organic and bio-fertilizers on broccoli yield and quality. Applied ecology & environmental research, 16(2).
  • Anonymous, (2017). FAO, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security, FAO: Rome, Italy, 2017.
  • Anonymous, (2018). FAO, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World 2018: Building Climatic Resilience for Food Securityand Nutrition, Food and Agriculture Organization of the United Nations: Rome, Italy.
  • Arisha, H. M., & Bradisi, A. (1999). Effect of mineral fertilizers and organic fertilizers on growth, yield and quality of potato under sandy soil conditions. Zagazig journal of agricultural research, 26, 391-405.
  • Arora, M., Saxena, P., Abdin, M., Varma, A. (2018). Interaction between Piriformospora indica and Azotobacter chroococcum governs better plant physiological and biochemical parameters in Artemisia annua L. plants grown under in vitro conditions. Symbiosis, 75, 103–112.
  • Aslantaş, R., Çakmakçi, R., & Şahin, F. (2007). Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Scientia horticulturae, 111(4), 371-377.
  • Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology letters, 32, 1559-1570.
  • Badr, L.A.A., & Fekry, W.A. (1998). Effect of intercropping and doses of fertilization on growth and productivity of taro and cucumber plants. 1- vegetative growth and chemical constituents of foliage. Zagazig journal of agricultural research. 25, 1087-101.
  • Bar-Ness, E., Hadar, Y., Chen, Y., Romheld, V., & Marschner, H. (1992). Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant physiology, 100(1), 451-456.
  • Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied microbiology and biotechnology, 84(1), 11-18.
  • Brahmaprakash, G. P., Sahu, P. K., Lavanya, G., Nair, S. S., Gangaraddi, V. K., & Gupta, A. (2017). Microbial functions of the rhizosphere. Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 1: Fundamental Mechanisms, Methods and Functions, 177-210.
  • Caballero-Mellado, J., Onofre-Lemus, J., Estrada-De Los Santos, P., & Martínez-Aguilar, L. (2007). The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Applied and environmental microbiology, 73(16),5308-5319.
  • Çakmakçı, R., Erat, M., Erdoğan, Ü., & Dönmez, M. F. (2007a). The influence of plant growth–promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of plant nutrition and soil science, 170(2), 288-295.
  • Cakmakci, R., Dönmez, M. F., & Erdoğan, Ü. (2007b). The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish journal of agriculture and forestry, 31(3), 189-199.
  • Cakmakci, R., Erat, M., Oral, B., Erdogan, Ü., & Șahin, F. (2009). Enzyme activities and growth promotion of spinach by indole-3-acetic acid-producing rhizobacteria. The journal of horticultural science and Biotechnology, 84(4), 375–380. https://doi.org/10.1080/14620316.2009.11512535
  • Canbolat, M. Y., Bilen, S., Aydın, A., Çakmakçı, R., & Şahin, F. (2006). Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology and fertility of soils, 42(4), 350-357.
  • Chabot, R., Antoun, H., & Cescas, M. P. (1996). Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Biology and fertility of soils, 21(4), 365-369.
  • Chauhan, H., & Bagyaraj, D. J. (2015). Inoculation with selected microbial consortia not only enhances growth and yield of French bean but also reduces fertilizer application under field condition. Scientia Horticulturae, 197, 441-446.
  • Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied soil ecology, 34(1), 33-41.
  • Choudhary, S., & Paliwal, R. (2017). Effect of bio-organics and mineral nutrients on yield, quality and economics of sprouting broccoli (Brassica oleracea var. italica). International journal of current microbiology applied sciences, 6(12), 742-749.
  • Cruz, C., Lips, S. H., & Martins‐Loução, M. A. (1993). Interactions between nitrate and ammonium during uptake by carob seedlings and the effect of the form of earlier nitrogen nutrition. Physiologia plantarum, 89(3), 544-551.
  • Dauda, S. N., Ajayi, F. A., & Ndor, E. (2009). Growth and yield of water melon (Citrullus lanatus) as affected by poultry manure application. Electronic journal of environmental, agricultural and food chemistry, 8(4), 305-311.
  • Dicko, A. H., Babana, A. H., Kassogué, A., Fané, R., Nantoumé, D., Ouattara, D., & Dao, S. (2018). A Malian native plant growth promoting Actinomycetes based biofertilizer improves maize growth and yield. Symbiosis, 75, 267-275.
  • Enebe, M. C., & Babalola, O. O. (2018). The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Applied microbiology and biotechnology, 102, 7821-7835.
  • Esitken, A., Ercisli, S., & Eken, C. (2005). Effects of mycorrhiza isolates on symbiotic germination of terrestrial orchids (Orchis palustris Jacq. and Serapias vomeracea subsp. vomeracea (Burm. f.) Briq.) in Turkey. Symbiosis, 38(1), 59-68.
  • Fathi, A. (2017). Effect of phosphate solubilization microorganisms and plant growth promoting rhizobacteria on yield and yield components of corn. Scientia agriculturae, 18(3), 66-69.
  • Fuentes-Ramirez, L., & Caballero-Mellado, J. (2006). Bacterial Biofertilizers. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and Biofertilization (pp. 143-172). Springer-Verlag.
  • Glaser, B., & Lehr, V.I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific reports, 9(1), 9338.
  • Grover, M., Ali, S. Z., Sandhya, V., Rasul, A., & Venkateswarlu, B. (2011). Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World journal of microbiology and biotechnology, 27, 1231-1240.
  • Hassen, A. I., Bopape, F. L., & Sanger, L. K. (2016). Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. Microbial Inoculants in sustainable agricultural productivity: Vol. 1: research perspectives, 23-36.
  • Itelima, J. U., Bang, W. J., Onyimba, I. A., Sila, M. D., & Egbere, O. J. (2018). Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review.
  • Kamal, N., Liu, Z., Qian, C., Wu, J., & Zhong, X. (2021). Improving hybrid Pennisetum growth and cadmium phytoremediation potential by using Bacillus megaterium BM18-2 spores as biofertilizer. Microbiological research, 242, 126594.
  • Karaçal, İ. & Tüfenkçi, Ş. (2019). New Approaches to Plant Nutrition and Fertilizer-Environment Relationship. (In Turkish) http://www.zmo.org.tr.
  • Khalid, M., Hassani, D., Bilal, M., Asad, F., & Huang, D. (2017). Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of Spinacia oleracea L. Botanical studies, 58, 1-9.
  • Lucy, M., Reed, E., & Glick, B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek, 86(1), 1-25.
  • Madhaiyan, M., Poonguzhali, S., Lee, J. S., Lee, K. C., & Hari, K. (2006). Influence of pesticides on the growth rate and plant-growth-promoting traits of Gluconacetobacter diazotrophicus. Pesticide biochemistry and physiology, 84(2), 143-154.
  • Malik, F. R., Ahmed, S., & Rizki, Y. M. (2001). Utilization of lignocellulosic waste for the preparation of nitrogenous biofertilizer. Pakistan journal of biological sciences, 4(10), 1217-1220.
  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant science, 166(2), 525-530.
  • Mishra, P. K., Mishra, S., Selvakumar, G., Bisht, J. K., Kundu, S., & Gupta, H. S. (2009). Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World journal of microbiology and biotechnology, 25(5), 753-761.
  • Olanrewaju, O. S., Ayangbenro, A. S., Glick, B. R., & Babalola, O. O. (2019). Plant health: feedback effect of root exudates-rhizobiome interactions. Applied microbiology and biotechnology, 103, 1155-1166.
  • Ortas, I. & Lal, R. (2011).Climate Change and Food Security in West Asia. In International Conference on Adaptation to Climate Change and Food Security in West Asia and North Africa Kuwait City, Kuwai.
  • Panda, S.C. (2011). Organic Farming for Sustainable Agriculture, 3rd ed., Kalyani Publishers: New Delhi, India,.
  • Rather, A. M., Jabeen, N., Bhat, T. A., Parray, E. A., Hajam, M. A., Wani, M. A., & Bhat, I. A. (2018). Effect of organic manures and bio-fertilizers on growth and yield of lettuce. The Pharma innovation, 7(5, Part B), 75.
  • Roberson, E. B., & Firestone, M. K. (1992). Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Applied and environmental microbiology, 58(4), 1284-1291.
  • Rodríguez, A. A., Stella, A. M., Storni, M. M., Zulpa, G., & Zaccaro, M. C. (2006). Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline systems, 2, 1-4.
  • Rodrı́guez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances, 17(4-5), 319-339.
  • Sagoe, C. I., Ando, T., Kouno, K., & Nagaoka, T. (1998). Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids. Soil science and plant nutrition, 44(4), 617-625.
  • Sandhya, V., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant growth regulation, 58(2), 157-167.
  • Saxena, A.K., Lata Shende, R., & Pandey, A.K. (2005). Of plant growth promoting rhizobacteria. In: Basic research applications of mycorrhizae. (Eds) Gopi, K.P, Varma, A. I K International Pvt Ltd, New Delhi, pp 453– 474.
  • Selvakumar, G., Kundu, S., Gupta, A. D., Shrivastava, A. K., & Gupta, H. S. (2008). Isolation and characterization of nonrhizobial plant growth-promoting bacteria from nodules of kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Current microbiology, 56(2), 134-139.
  • Singh, A., Maji, S., & Kumar, S. (2014). Effect of biofertilizers on yield and biomolecules of anti-cancerous vegetable broccoli. International journal of bio-resource and stress management, 5(2), 262-268.
  • Sinha, R.K., Valani, D., Chauhan, K. & Agarwal S. (2014). Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin”. İnternational journal of agriculture and biology,1,50–64.
  • Sivakumar, T., Ravikumar, M. & Prakash, M. (2013). Thamizhmani R. Comparative effect on bacterial biofertilizers on growth and yield of green gram (Phaseolus radiata L.) and cow pea (Vigna siensis Edhl.). International journal of current research and academic review, 1(2), 20-28.
  • Srivastava, S., Gadasalli, S., Agarwal, S., & Aggarwal, R. (2008). Anesthetic management of a parturient with dissecting thoracic aortic aneurysm. Journal of anaesthesiology clinical pharmacology, 24(3), 345-347.
  • Şahin, F., Cakmakci, R., & Kantar, F. (2004). Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant and soil, 265(1-2), 123-129.
  • Taiz, L., & Zeiger, E. (2002). Plant Physiology (Third Edition). Sinauer Associates, Inc., Publishers, Sunderland, 67-86.
  • Tisdall, J. M., & Oades, J. M. (1982). Organic Matter and Water-Stable Aggregates in Soils. European journal of soil science, 33, 141-163.
  • Tošić, I., Golić, Z. & Radosavac, A. (2016). Effects of the application of biofertilizers on the microflora and yield of lettuce (Lactuca sativa L.). Acta agriculturae serbica, 21, 91–98.
  • Upadhyay, A., Hwang, S. J., Mitchell, G. F., Vasan, R. S., Vita, J. A., Stantchev, P. I. & Benjamin, E. J. (2009). Arterial stiffness in mild to moderate CKD. Journal of the american society of nephrology, 20(9), 2044-2053.
  • Valverde, J., Reilly, K., Villacreces, S., Gaffney, M., Grant, J. & Brunton, N. (2015). Variation in bioactive content in broccoli (Brassica oleracea var. italica) grown under conventional and organic production systems. Journal of the science of food and agriculture, 95 (6),163-1171.
  • Verma, D. K., Pandey, A. K., Mohapatra, B., Srivastava, S., Kumar, V., Talukdar, D., & Asthir, B. (2019). Plant growth-promoting rhizobacteria: An eco-friendly approach for sustainable agriculture and improved crop production. In Microbiology for sustainable agriculture, soil health, and environmental protection (pp. 3-80). Apple academic press.
  • Vessey, J.K. (2003). Plant growth promoting Rhizobacteria as biofertilizers. Plant soil , 255, 571–586.
  • Wilsion, L. T. (2006). Cyanobacteria: a potential nitrogen source in rice fields. Texas rice, 6(1), 9-10.
  • Win, K. T., Okazaki, K., Ookawa, T., Yokoyama, T., & Ohwaki, Y. (2019). Influence of rice-husk biochar and Bacillus pumilus strain TUAT-1 on yield, biomass production, and nutrient uptake in two forage rice genotypes. PLoS One, 14(7), e0220236.
  • Yadav, K. K. & Smritikana Sarkar, S. S. (2019). Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Environment and ecology, 37, 89–93.
  • Yanni, Y. G., Rizk, R. Y., Abd El-Fattah, F. K., Squartini, A., Corich, V., Giacomini, A. & De Bruijn, F. J. (1997). The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Australian journal of plant physiology, 24(2), 241-249.
  • Yildirim, E., Turan, M., Ekinci, M., Dursun, A. & Cakmakci, R. (2011). Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Scientific research and essays, 6, 4389–4396.
  • Yu, C., Huang, X., Chen, H., Godfray, H. C. J., Wright, J. S., Hall, J. W. & Taylor, J. (2019). Managing nitrogen to restore water quality in China. Nature, 567 (7749), 516-520.
  • Zahir, A.Z., Arshad, M. & Frankenberger W.T. (2004). Plant growth promoting rhizobacteria: applica tions and perspectives in agriculture. Advances in agronomy, 81:97–168.
  • Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S., & Imran, A. (2021). Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological research, 242, 126626.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sebze Yetiştirme ve Islahı
Bölüm Makaleler
Yazarlar

Özlem Altuntaş 0000-0002-6508-7368

Rabia Küçük 0000-0001-6772-7448

Yayımlanma Tarihi 29 Eylül 2024
Gönderilme Tarihi 24 Mayıs 2024
Kabul Tarihi 16 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 3

Kaynak Göster

APA Altuntaş, Ö., & Küçük, R. (2024). The use of biofertilizer contribution to plant development and yield in greenhouse broccoli cultivation. International Journal of Agriculture Environment and Food Sciences, 8(3), 531-540. https://doi.org/10.31015/jaefs.2024.3.6

by-nc.png

International Journal of Agriculture, Environment and Food Sciences dergisinin içeriği, Creative Commons Alıntı-GayriTicari (CC BY-NC) 4.0 Uluslararası Lisansı ile yayınlanmaktadır. Söz konusu telif, üçüncü tarafların içeriği uygun şekilde atıf vermek koşuluyla, ticari olmayan amaçlarla paylaşımına ve uyarlamasına izin vermektedir. Yazarlar, International Journal of Agriculture, Environment and Food Sciences dergisinde yayınlanmış çalışmalarının telif hakkını elinde tutar. 

Web: dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27