Research Article
BibTex RIS Cite

On σ-primeness and σ-semiprimeness in rings with involution

Year 2024, Volume: 13 Issue: 3, 262 - 270, 31.12.2024
https://doi.org/10.54187/jnrs.1581184

Abstract

This study introduces the structure of $\left\vert
\mathcal{S}_{R}^{\sigma}\right\vert $-$\sigma$-semiprime ring, $\left\vert \mathcal{S}_{R}^{\sigma}\right\vert $-$\sigma$-prime ring, and source of $\sigma$-primeness , which have not been previously explored, and presents new results. We define a subset $$
P_{R_{\sigma}} = \bigcap_{a\in R} S_{R_{\sigma}}^{a}
$$ of ring $R$ as $S_{R}^{\sigma}=\left\{ \left. a\in R\right\vert aRa=aR{\sigma}(a)=(0)\right\} $, where $\sigma$ is an involution is referred to as the source of $\sigma$-primeness of $R$. Additionally, we have established some relationships between the prime radical $\beta(R)$ and $\mathcal{S}_{R}^{\sigma}$.

Project Number

FBA-2019-2812

Thanks

The research has been supported by Çanakkale Onsekiz Mart University The Scientific Research Coordination Unit, Grant number: FBA-2019-2812.

References

  • N. H. McCoy, The theory of rings, The Macmillan & Co LTD, New York, 1964.
  • I. N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976.
  • L. Oukhtite, L. Taoufiq, Some properties of derivations on rings with involution, International Journal of Modern Mathematical Sciences 4 (3) (2009) 309–315.
  • M. Ashraf, S. Ali, On left multipliers and commutativity of prime rings, Demonstratio Mathematica 41 (4) (2008) 764–771.
  • H. E. Bell, W. S. Martindale III, Centralizing mappings of semiprime rings, Canadian Mathematical Bulletin 30 (1) (1987) 92–101.
  • L. Moln´ar, On centralizers of an H-algebra, Publicationes Mathematicae Debrecen 46 (1-2) (1995) 89–95.
  • L. Oukhtite, On Jordan ideals and derivations in rings with involution, Commentationes Mathematicae Universitatis Carolinae 51 (3) (2010) 389–395.
  • L. Oukhtite, Left multipliers and Lie ideals in rings with involution, International Journal of Open Problems in Computer Science and Mathematics 3 (3) (2010) 267–277.
  • L. Oukhtite, Posner’s second theorem for Jordan ideals in ring with involution, Expositiones Mathematica 29 (4) (2011) 415–419.
  • E. C. Posner, Derivations in prime rings, Proceedings of the American Mathematical Society 8 (6) (1957) 1093–1100.
  • J. Mayne, Centralizing automorphisms of prime rings, Canadian Mathematical Bulletin 19 (1) (1976) 113–115.
  • N. Aydın, Ç. Demir, D. Karalarlıo˘glu Camcı, The source of semiprimeness of rings, Communications of the Korean Mathematical Society 33 (4) (2018) 1083–1096.
  • D. Yeşil, D. Karalarlıoğlu Camcı, The source of primeness of rings, Journal of New Theory (41) (2022) 100–104.
  • L. Oukhtite, S. Salhi, Centralizing automorphisms and Jordan left derivations on σ-prime rings, Advances in Algebra 1 (1) (2008) 19–26.
  • L. Oukhtite, S. Salhi, On commutativity of σ-prime rings, Glasnik Matematicki Series III 41 (61) (2006) 57–64.
  • N. U. Rehman, R. M. Al-Omary, A. Z. Ansari, On Lie ideals of ∗-prime rings with generalized derivations, Boletin de la Sociedad Matematica Mexicana 21 (2015) 19–26.
  • D. Karalarlıoğlu Camcı, Source of semiprimeness and multiplicative (generalized) derivations in rings, Doctoral Dissertation Çanakkale Onsekiz Mart University (2017) Çanakkale.
  • D. Karalarlıoğlu Camcı, D. Yeşil, B. Albayrak, Source of semiprimeness of ∗-prime rings, Journal of Amasya University the Institute of Sciences and Technology 5 (1) (2024) 43–48.
Year 2024, Volume: 13 Issue: 3, 262 - 270, 31.12.2024
https://doi.org/10.54187/jnrs.1581184

Abstract

Project Number

FBA-2019-2812

References

  • N. H. McCoy, The theory of rings, The Macmillan & Co LTD, New York, 1964.
  • I. N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976.
  • L. Oukhtite, L. Taoufiq, Some properties of derivations on rings with involution, International Journal of Modern Mathematical Sciences 4 (3) (2009) 309–315.
  • M. Ashraf, S. Ali, On left multipliers and commutativity of prime rings, Demonstratio Mathematica 41 (4) (2008) 764–771.
  • H. E. Bell, W. S. Martindale III, Centralizing mappings of semiprime rings, Canadian Mathematical Bulletin 30 (1) (1987) 92–101.
  • L. Moln´ar, On centralizers of an H-algebra, Publicationes Mathematicae Debrecen 46 (1-2) (1995) 89–95.
  • L. Oukhtite, On Jordan ideals and derivations in rings with involution, Commentationes Mathematicae Universitatis Carolinae 51 (3) (2010) 389–395.
  • L. Oukhtite, Left multipliers and Lie ideals in rings with involution, International Journal of Open Problems in Computer Science and Mathematics 3 (3) (2010) 267–277.
  • L. Oukhtite, Posner’s second theorem for Jordan ideals in ring with involution, Expositiones Mathematica 29 (4) (2011) 415–419.
  • E. C. Posner, Derivations in prime rings, Proceedings of the American Mathematical Society 8 (6) (1957) 1093–1100.
  • J. Mayne, Centralizing automorphisms of prime rings, Canadian Mathematical Bulletin 19 (1) (1976) 113–115.
  • N. Aydın, Ç. Demir, D. Karalarlıo˘glu Camcı, The source of semiprimeness of rings, Communications of the Korean Mathematical Society 33 (4) (2018) 1083–1096.
  • D. Yeşil, D. Karalarlıoğlu Camcı, The source of primeness of rings, Journal of New Theory (41) (2022) 100–104.
  • L. Oukhtite, S. Salhi, Centralizing automorphisms and Jordan left derivations on σ-prime rings, Advances in Algebra 1 (1) (2008) 19–26.
  • L. Oukhtite, S. Salhi, On commutativity of σ-prime rings, Glasnik Matematicki Series III 41 (61) (2006) 57–64.
  • N. U. Rehman, R. M. Al-Omary, A. Z. Ansari, On Lie ideals of ∗-prime rings with generalized derivations, Boletin de la Sociedad Matematica Mexicana 21 (2015) 19–26.
  • D. Karalarlıoğlu Camcı, Source of semiprimeness and multiplicative (generalized) derivations in rings, Doctoral Dissertation Çanakkale Onsekiz Mart University (2017) Çanakkale.
  • D. Karalarlıoğlu Camcı, D. Yeşil, B. Albayrak, Source of semiprimeness of ∗-prime rings, Journal of Amasya University the Institute of Sciences and Technology 5 (1) (2024) 43–48.
There are 18 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Didem Yeşil 0000-0003-0666-9410

Didem Karalarlıoğlu Camcı 0000-0002-8413-3753

Barış Albayrak 0000-0002-8255-4706

Project Number FBA-2019-2812
Publication Date December 31, 2024
Submission Date November 7, 2024
Acceptance Date December 12, 2024
Published in Issue Year 2024 Volume: 13 Issue: 3

Cite

APA Yeşil, D., Karalarlıoğlu Camcı, D., & Albayrak, B. (2024). On σ-primeness and σ-semiprimeness in rings with involution. Journal of New Results in Science, 13(3), 262-270. https://doi.org/10.54187/jnrs.1581184
AMA Yeşil D, Karalarlıoğlu Camcı D, Albayrak B. On σ-primeness and σ-semiprimeness in rings with involution. JNRS. December 2024;13(3):262-270. doi:10.54187/jnrs.1581184
Chicago Yeşil, Didem, Didem Karalarlıoğlu Camcı, and Barış Albayrak. “On σ-Primeness and σ-Semiprimeness in Rings With Involution”. Journal of New Results in Science 13, no. 3 (December 2024): 262-70. https://doi.org/10.54187/jnrs.1581184.
EndNote Yeşil D, Karalarlıoğlu Camcı D, Albayrak B (December 1, 2024) On σ-primeness and σ-semiprimeness in rings with involution. Journal of New Results in Science 13 3 262–270.
IEEE D. Yeşil, D. Karalarlıoğlu Camcı, and B. Albayrak, “On σ-primeness and σ-semiprimeness in rings with involution”, JNRS, vol. 13, no. 3, pp. 262–270, 2024, doi: 10.54187/jnrs.1581184.
ISNAD Yeşil, Didem et al. “On σ-Primeness and σ-Semiprimeness in Rings With Involution”. Journal of New Results in Science 13/3 (December 2024), 262-270. https://doi.org/10.54187/jnrs.1581184.
JAMA Yeşil D, Karalarlıoğlu Camcı D, Albayrak B. On σ-primeness and σ-semiprimeness in rings with involution. JNRS. 2024;13:262–270.
MLA Yeşil, Didem et al. “On σ-Primeness and σ-Semiprimeness in Rings With Involution”. Journal of New Results in Science, vol. 13, no. 3, 2024, pp. 262-70, doi:10.54187/jnrs.1581184.
Vancouver Yeşil D, Karalarlıoğlu Camcı D, Albayrak B. On σ-primeness and σ-semiprimeness in rings with involution. JNRS. 2024;13(3):262-70.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).