Araştırma Makalesi
BibTex RIS Kaynak Göster

Memristör Tabanlı Hiperkaotik Lorenz Sisteminin Kayan Kipli Kontrol Yöntemi Kullanılarak Senkronizasyonu ve Kontrolü

Yıl 2024, , 101 - 109, 20.12.2024
https://doi.org/10.58769/joinssr.1533383

Öz

Bu çalışmada memristör tabanlı hiperkaotik lorenz sisteminin, dayanıklı doğrusal olmayan bir kontrol algoritması olan kayan kipli kontrol yöntemi kullanılarak senkronizasyonu ve kontrolü sağlanmıştır. Doğrusal olmayan özellik, memristörün kaotik devrelerde uygulanabileceğini göstermiş ve lineer olmayan denklemlere sahip farklı memristör tabanlı kaotik devreler, tasarımının oldukça fazla ilgi çektiği zamanlarda ortaya çıkmıştır. Bu çalışmada kayan kipli kontrol yönteminin tercih edilmesinin nedeni kayan kipli kontrolün sağlam bir yaklaşım olması, dış etkenlerden korunması ve çok az etkilenmesidir. Sayısal simülasyonlar, memristör tabanlı hiperkaotik lorenz sisteminin önerilen kayan kipli kontrol yöntemleriyle senkronizasyonunu doğrulamaktadır.

Kaynakça

  • [1] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on Circuit Theory, vol.18, no. 5, pp. 507-519, 1971. https://doi.org/10.1109/TCT.1971.1083337
  • [2] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, “The missing memristor found,” Nature, vol. 453, pp. 80–83, 2008. https://doi.org/ 10.1038/nature06932
  • [3] C. Yakopcic, R. Hasan, T. M. Taha, “Flexible memristor based neuromorphic system for implementing multi-layer neural network algorithms,” International Journal of Parallel, Emergent and Distributed Systems, vol. 33, no. 4, pp. 408–429, 2018. https://doi.org/10.1080/17445760.2017.1321761
  • [4] N. S. M. Hadis, A. A. Manaf, S. H. Ngalim, S. H. Herman, “Fabrication and characterisation of fluidic based memristor sensor for liquid with hydroxylgroup,” Sensing and Bio-Sensing Research, vo. 14, pp. 21–29, 2017. https://doi.org/10.1016/j.sbsr.2017.04.002
  • [5] G. Saha, R. Pasumarthy, P. Khatavkar, “Towards analog memristive controllers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 205– 214, 2015. http://doi.org/10.1109/TCSI.2014.2359715
  • [6] H. Kim, M. P. Sah, C. Yang, T. Roska, L. O. Chua, “Neural synaptic weighting with a pulse-based memristor circuit,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 1, pp. 148–158, 2012. http://doi.org/10.1109/TCSI.2011.2161360
  • [7] I. E. Ebong, P.Mazumder, “Self-controlled writing and erasing in a memristor crossbar memory,” IEEE Transactions on Nanotechnology, vol. 10, no. 6, pp. 1454–1463, 2011. http://doi.org/10.1109/TNANO.2011.2166805
  • [8]D. Varghese, G. Gandhi. “Memristor based high linear range differential pair, In Communications, Circuits and Systems,” ICCCAS 2009, International Conference on, IEEE, 2009, pp. 935–938.
  • [9]M. Itoh, L. Chua, “Memristor oscillators,” International Journal of Bifurcation and Chaos, vol. 18, no. 11, pp. 3183-3206, 2008. http://.doi.org/10.1142/S0218127408022354
  • [10]L. M. Pecora, T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, pp. 821-824, 1990. http://dx.doi.org/10.1103/PhysRevLett.64.821
  • [11]S. P. Wen, Z. G. Zeng, T. W. Huang, Y. R. Chen, “Fuzzy modeling and synchronization of different memristor-based chaotic circuits,” Physics Letters A, vol. 377, pp. 2016–2021, 2013. https://doi.org/10.1016/j.physleta.2013.05.046
  • [12]R. Yang, M. Wang, L. Li, Y. Zenggu, J. Jiang, “Integrated uncertainty/disturbance compensation with second-order sliding-mode observer for PMLSM-driven motion stage,” IEEE Transactions on Power Electronics, vol. 34, no. 3, pp. 2597–2607, 2018. https://doi.org/10.1109/TPEL.2018.2845705
  • [13]X. Sun, Z. Shi, L. Chen, Z. Yang, “Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method,” IEEE Transactions on Energy Conversation, vol. 31, no. 4, pp. 1539–1548, 2016. https://doi.org/10.1109/TEC.2016.2591925
  • [14]U. E. Kocamaz, A. Goksu, H. Taskin, Y. Uyaroglu, “Synchronization of chaos in nonlinear finance system by means of sliding mode and passive control methods: A comparative study,” Information Technology and Control, vol. 44, no. 2, pp. 172–181, 2015. https://doi.org/10.5755/j01.itc.44.2.7732
  • [15]Y. Y. Hou, B. Y. Liau, H. C. Chen, “Synchronization of unified chaotic systems using sliding mode controller,” Mathematical Problems in Engineering, vol. 2012, pp. 10, 2012. https://doi.org/10.1155/2012/632712
  • [16]A. Gokyildirim, “A Novel Chaotic Attractor With a Line and Unstable Equilibria: Dynamics, Circuit Design, and Microcontroller-Based Sliding Mode Control,” IEEE Canadian Journal of Electrical and Computer Engineering, vol. 46, no.3, pp. 228-236, 2023. https://doi.org/10.1109/ICJECE.2023.3275281
  • [17]B. Cevher, T. E. Gumus, M. Turan, S. Emiroglu, M. A. Yalcin “A Single State Sliding Mode Controller Design Using Intelligent Optimization Algorithms for the Chaotic WINDMI System,” Tehnicki vjesnik, vol. 29, no. 2, pp. 504–510, 2022. https://doi.org/10.17559/TV-20201026120418
  • [18]A. Gokyildirim, H. Calgan, M. Demirtas, “Fractional-Order sliding mode control of a 4D memristive chaotic system,” Journal of Vibration and Control, vol. 30, no. 7-8, pp. 1604–1620, 2023. https://doi.org/10.1177/10775463231166187

Control and Synchronization of a Memristor-based Hyperchaotic Lorenz System using Sliding Mode Control

Yıl 2024, , 101 - 109, 20.12.2024
https://doi.org/10.58769/joinssr.1533383

Öz

We studied some new findings on the sliding mode control, that have been derived for the chaos synchronization of memristor – based hyperchaotic Lorenz systems. Nonlinear property has shown that the memristor can be used in chaotic circuits and the latest memristor-based chaotic circuits with different nonlinear equations at times its design attracts quite a lot of attention. The reason why the sliding mode control method is preferred is due to the fact that it is a robust approach and thus less susceptible to the external disturbances. In fact it is affected in a very little range. Numerical simulations of the synchronization of the proposed control methods with the studied system here, have proved to be largely valid.

Kaynakça

  • [1] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on Circuit Theory, vol.18, no. 5, pp. 507-519, 1971. https://doi.org/10.1109/TCT.1971.1083337
  • [2] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, “The missing memristor found,” Nature, vol. 453, pp. 80–83, 2008. https://doi.org/ 10.1038/nature06932
  • [3] C. Yakopcic, R. Hasan, T. M. Taha, “Flexible memristor based neuromorphic system for implementing multi-layer neural network algorithms,” International Journal of Parallel, Emergent and Distributed Systems, vol. 33, no. 4, pp. 408–429, 2018. https://doi.org/10.1080/17445760.2017.1321761
  • [4] N. S. M. Hadis, A. A. Manaf, S. H. Ngalim, S. H. Herman, “Fabrication and characterisation of fluidic based memristor sensor for liquid with hydroxylgroup,” Sensing and Bio-Sensing Research, vo. 14, pp. 21–29, 2017. https://doi.org/10.1016/j.sbsr.2017.04.002
  • [5] G. Saha, R. Pasumarthy, P. Khatavkar, “Towards analog memristive controllers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 205– 214, 2015. http://doi.org/10.1109/TCSI.2014.2359715
  • [6] H. Kim, M. P. Sah, C. Yang, T. Roska, L. O. Chua, “Neural synaptic weighting with a pulse-based memristor circuit,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 1, pp. 148–158, 2012. http://doi.org/10.1109/TCSI.2011.2161360
  • [7] I. E. Ebong, P.Mazumder, “Self-controlled writing and erasing in a memristor crossbar memory,” IEEE Transactions on Nanotechnology, vol. 10, no. 6, pp. 1454–1463, 2011. http://doi.org/10.1109/TNANO.2011.2166805
  • [8]D. Varghese, G. Gandhi. “Memristor based high linear range differential pair, In Communications, Circuits and Systems,” ICCCAS 2009, International Conference on, IEEE, 2009, pp. 935–938.
  • [9]M. Itoh, L. Chua, “Memristor oscillators,” International Journal of Bifurcation and Chaos, vol. 18, no. 11, pp. 3183-3206, 2008. http://.doi.org/10.1142/S0218127408022354
  • [10]L. M. Pecora, T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, pp. 821-824, 1990. http://dx.doi.org/10.1103/PhysRevLett.64.821
  • [11]S. P. Wen, Z. G. Zeng, T. W. Huang, Y. R. Chen, “Fuzzy modeling and synchronization of different memristor-based chaotic circuits,” Physics Letters A, vol. 377, pp. 2016–2021, 2013. https://doi.org/10.1016/j.physleta.2013.05.046
  • [12]R. Yang, M. Wang, L. Li, Y. Zenggu, J. Jiang, “Integrated uncertainty/disturbance compensation with second-order sliding-mode observer for PMLSM-driven motion stage,” IEEE Transactions on Power Electronics, vol. 34, no. 3, pp. 2597–2607, 2018. https://doi.org/10.1109/TPEL.2018.2845705
  • [13]X. Sun, Z. Shi, L. Chen, Z. Yang, “Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method,” IEEE Transactions on Energy Conversation, vol. 31, no. 4, pp. 1539–1548, 2016. https://doi.org/10.1109/TEC.2016.2591925
  • [14]U. E. Kocamaz, A. Goksu, H. Taskin, Y. Uyaroglu, “Synchronization of chaos in nonlinear finance system by means of sliding mode and passive control methods: A comparative study,” Information Technology and Control, vol. 44, no. 2, pp. 172–181, 2015. https://doi.org/10.5755/j01.itc.44.2.7732
  • [15]Y. Y. Hou, B. Y. Liau, H. C. Chen, “Synchronization of unified chaotic systems using sliding mode controller,” Mathematical Problems in Engineering, vol. 2012, pp. 10, 2012. https://doi.org/10.1155/2012/632712
  • [16]A. Gokyildirim, “A Novel Chaotic Attractor With a Line and Unstable Equilibria: Dynamics, Circuit Design, and Microcontroller-Based Sliding Mode Control,” IEEE Canadian Journal of Electrical and Computer Engineering, vol. 46, no.3, pp. 228-236, 2023. https://doi.org/10.1109/ICJECE.2023.3275281
  • [17]B. Cevher, T. E. Gumus, M. Turan, S. Emiroglu, M. A. Yalcin “A Single State Sliding Mode Controller Design Using Intelligent Optimization Algorithms for the Chaotic WINDMI System,” Tehnicki vjesnik, vol. 29, no. 2, pp. 504–510, 2022. https://doi.org/10.17559/TV-20201026120418
  • [18]A. Gokyildirim, H. Calgan, M. Demirtas, “Fractional-Order sliding mode control of a 4D memristive chaotic system,” Journal of Vibration and Control, vol. 30, no. 7-8, pp. 1604–1620, 2023. https://doi.org/10.1177/10775463231166187
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektronik, Sensörler ve Dijital Donanım (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Hakan Kaya 0000-0002-2408-1410

Yılmaz Uyaroğlu 0000-0001-5897-6274

Yayımlanma Tarihi 20 Aralık 2024
Gönderilme Tarihi 14 Ağustos 2024
Kabul Tarihi 6 Kasım 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kaya, H., & Uyaroğlu, Y. (2024). Control and Synchronization of a Memristor-based Hyperchaotic Lorenz System using Sliding Mode Control. Journal of Smart Systems Research, 5(2), 101-109. https://doi.org/10.58769/joinssr.1533383
AMA Kaya H, Uyaroğlu Y. Control and Synchronization of a Memristor-based Hyperchaotic Lorenz System using Sliding Mode Control. JoinSSR. Aralık 2024;5(2):101-109. doi:10.58769/joinssr.1533383
Chicago Kaya, Hakan, ve Yılmaz Uyaroğlu. “Control and Synchronization of a Memristor-Based Hyperchaotic Lorenz System Using Sliding Mode Control”. Journal of Smart Systems Research 5, sy. 2 (Aralık 2024): 101-9. https://doi.org/10.58769/joinssr.1533383.
EndNote Kaya H, Uyaroğlu Y (01 Aralık 2024) Control and Synchronization of a Memristor-based Hyperchaotic Lorenz System using Sliding Mode Control. Journal of Smart Systems Research 5 2 101–109.
IEEE H. Kaya ve Y. Uyaroğlu, “Control and Synchronization of a Memristor-based Hyperchaotic Lorenz System using Sliding Mode Control”, JoinSSR, c. 5, sy. 2, ss. 101–109, 2024, doi: 10.58769/joinssr.1533383.
ISNAD Kaya, Hakan - Uyaroğlu, Yılmaz. “Control and Synchronization of a Memristor-Based Hyperchaotic Lorenz System Using Sliding Mode Control”. Journal of Smart Systems Research 5/2 (Aralık 2024), 101-109. https://doi.org/10.58769/joinssr.1533383.
JAMA Kaya H, Uyaroğlu Y. Control and Synchronization of a Memristor-based Hyperchaotic Lorenz System using Sliding Mode Control. JoinSSR. 2024;5:101–109.
MLA Kaya, Hakan ve Yılmaz Uyaroğlu. “Control and Synchronization of a Memristor-Based Hyperchaotic Lorenz System Using Sliding Mode Control”. Journal of Smart Systems Research, c. 5, sy. 2, 2024, ss. 101-9, doi:10.58769/joinssr.1533383.
Vancouver Kaya H, Uyaroğlu Y. Control and Synchronization of a Memristor-based Hyperchaotic Lorenz System using Sliding Mode Control. JoinSSR. 2024;5(2):101-9.