Catalytic Performance of Newly Synthesized Heterocyclic Hydrazone Derivatives For Production of High Yield Neem Biodiesel
Yıl 2024,
Cilt: 11 Sayı: 4, 1565 - 1580
Mussarat Jabeen
,
Irum Razzaq
,
Sajida Noureen
,
Syed Ubaid Hussain
,
Noreen Aslam
,
Ansa Zafar
,
K Mehmood
,
Misbah Ul Ain Khan
Öz
Biodiesel, a sustainable and environmentally friendly substitute for diesel, has attracted growing attention in recent years. The reuse of non-edible neem oil as a feedstock for biodiesel production is affordable and naturally safe. This study aimed to understand the understudied benefits of using heterocyclic organic hydrazone derivatives as catalysts for high yield biodiesel production. The catalysts were characterized using techniques such as EIMS, NMR, CHN and FTIR analysis, which revealed the morphological and functional characteristics of the catalyst. The optimum process conditions were found to be catalyst concentration of 50 mg/10 mL, methanol-to-oil molar ratio of 3:1, reaction temperature of 60 °C, and reaction duration of 60 min; these conditions yielded 95% biodiesel. The produced biodiesel was analyzed using FTIR, and different parameters like moisture content, saponification value, density, acid value, iodine value, and FFA value. The use of neem oil and organic based catalysts for biodiesel production is an economical and environmentally sustainable process.
Kaynakça
- 1. Ali MH, Mashud M, Rubel MR, Ahmad RH. Biodiesel from neem oil as an alternative fuel for diesel engine. Procedia Eng [Internet]. 2013 Jan 1;56:625–30. Available from: <URL>.
- 2. Bouzarovski S. Transforming urban energy demand: A timely challenge. Front Sustain Cities [Internet]. 2020 May 27;2:29. Available from: <URL>.
- 3. Asıf M, Muneer T. Energy supply, its demand and security issues for developed and emerging economies. Renew Sustain Energy Rev [Internet]. 2007 Sep 1;11(7):1388–413. Available from: <URL>.
- 4. Rastogi A, Shaban M, Saxena S, Singh TP. Neem biodiesel: An alternative fuel. Innovare J Eng Technol [Internet]. 2021 Nov 1;9:18–21. Available from: <URL>.
- 5. Banik SK, Rouf M. A., Rabeya T, Khanam M, Sajal SI, Sabur SB, et al. Production of biodiesel from neem seed oil. Bangladesh J Sci Ind Res [Internet]. 2018;53(3):211–8. Available from: <URL>.
- 6. Demirbas A. Characterization of biodiesel fuels. Energy Sources, Part A Recover Util Environ Eff [Internet]. 2009 Jun 12;31(11):889–96. Available from: <URL>.
- 7. Dueso C, Muñoz M, Moreno F, Arroyo J, Gil-Lalaguna N, Bautista A, et al. Performance and emissions of a diesel engine using sunflower biodiesel with a renewable antioxidant additive from bio-oil. Fuel [Internet]. 2018 Dec 15;234:276–85. Available from: <URL>.
- 8. Sentanuhady J, Hasan WH, Muflikhun MA. Recent progress on the implementation of renewable biodiesel fuel for automotive and power plants: Raw materials perspective. Riccio A, editor. Adv Mater Sci Eng [Internet]. 2022 Jan 4;2022(1):5452942. Available from: <URL>.
- 9. Ubaid Hussain S, Noureen S, Razzaq I, Alkter S, Mehmood F, Razzaq Z, et al. Optimization and characterization of acid catalyzed castor biodiesel and its blends. J Turkish Chem Soc Sect A Chem [Internet]. 2022 Nov 30;9(4):1007–22. Available from: <URL>.
- 10. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M. Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev [Internet]. 2012 Jan 1;16(1):143–69. Available from: <URL>.
- 11. Dhar Dubey KK, Jeyaseelan C, Upadhyaya KC, Chimote V, Veluchamy R, Kumar A. Biodiesel production from Hiptage benghalensis seed oil. Ind Crops Prod [Internet]. 2020 Feb 1;144:112027. Available from: <URL>.
- 12. Demirbas A. Potential resources of non-edible oils for biodiesel. Energy Sources, Part B Econ Planning, Policy [Internet]. 2009 Oct 30;4(3):310–4. Available from: <URL>.
- 13. Fadairo A, Adeyemi G, Ogunkunle T, Ling K, Rasouli V, Effiong E, et al. Study the suitability of neem seed oil for formulation of eco-friendly oil based drilling fluid. Pet Res [Internet]. 2021 Sep 1;6(3):283–90. Available from: <URL>.
- 14. Thangaraj B, Solomon PR, Muniyandi B, Ranganathan S, Lin L. Catalysis in biodiesel production—a review. Clean Energy [Internet]. 2019 Feb 27;3(1):2–23. Available from: <URL>.
- 15. Awolu OO, Layokun SK. Optimization of two-step transesterification production of biodiesel from neem (Azadirachta indica) oil. Int J Energy Environ Eng [Internet]. 2013 Nov 14;4(1):39. Available from: <URL>.
- 16. Rizwanul Fattah IM, Ong HC, Mahlia TMI, Mofijur M, Silitonga AS, Rahman SMA, et al. State of the art of catalysts for biodiesel production. Front Energy Res [Internet]. 2020 Jun 19;8:546060. Available from: <URL>.
- 17. Pasae Y, Tangdilintin S, Bulo L, Allo EL. The contribution of heterogeneous and homogeneous catalysts towards biodiesel quality. J Phys Conf Ser [Internet]. 2020 Feb 1;1464(1):012054. Available from: <URL>.
- 18. Rijo B, Fernando E, Ramos M, Dias APS. Biodiesel production over sodium carbonate and bicarbonate catalysts. Fuel [Internet]. 2022 Sep 1;323:124383. Available from: <URL>.
- 19. Basumatary SF, Patir K, Das B, Saikia P, Brahma S, Basumatary B, et al. Production of renewable biodiesel using metal organic frameworks based materials as efficient heterogeneous catalysts. J Clean Prod [Internet]. 2022 Jul 15;358:131955. Available from: <URL>.
- 20. Kusmiyati K, Prasetyoko D, Murwani S, Nur Fadhilah M, Oetami TP, Hadiyanto H, et al. Biodiesel production from reutealis trisperma oil using KOH impregnated eggshell as a heterogeneous catalyst. Energies [Internet]. 2019 Sep 28;12(19):3714. Available from: <URL>.
- 21. Feng W, Tie X, Duan X, Yan S, Fang S, Wang T, et al. Polymer functionalization of biochar-based heterogeneous catalyst with acid-base bifunctional catalytic activity for conversion of the insect lipid into biodiesel. Arab J Chem [Internet]. 2023 Jul 1;16(7):104814. Available from: <URL>.
- 22. Tahvildari K, Anaraki YN, Fazaeli R, Mirpanji S, Delrish E. The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil. J Environ Heal Sci Eng [Internet]. 2015 Dec 23;13(1):73. Available from: <URL>.
- 23. Demirbas A. Biodiesel from vegetable oils with MgO catalytic transesterification in supercritical methanol. Energy Sources, Part A Recover Util Environ Eff [Internet]. 2008 Jul 29;30(17):1645–51. Available from: <URL>.
- 24. Arshad S, Ahmad M, Munir M, Sultana S, Zafar M, Dawood S, et al. Assessing the potential of green CdO2 nano-catalyst for the synthesis of biodiesel using non-edible seed oil of Malabar Ebony. Fuel [Internet]. 2023 Feb 1;333:126492. Available from: <URL>.
- 25. Manurung R, Parinduri SZDM, Hasibuan R, Tarigan BH, Siregar AGA. Synthesis of nano-CaO catalyst with SiO2 matrix based on palm shell ash as catalyst support for one cycle developed in the palm biodiesel process. Case Stud Chem Environ Eng [Internet]. 2023 Jun 1;7:100345. Available from: <URL>.
- 26. Nabgan W, Nabgan B, Ikram M, Jadhav AH, Ali MW, Ul-Hamid A, et al. Synthesis and catalytic properties of calcium oxide obtained from organic ash over a titanium nanocatalyst for biodiesel production from dairy scum. Chemosphere [Internet]. 2022 Mar 1;290:133296. Available from: <URL>.
- 27. Eugen Raducanu C, Ionuta Gavrila A, Dobre T, Chipurici P. Study on alumina supported heterogeneo us catalysts for biodiesel production. Rev Chim [Internet]. 2018;69(8):2138–43. Available from: <URL>.
- 28. Wang A, Quan W, Zhang H, Li H, Yang S. Heterogeneous ZnO-containing catalysts for efficient biodiesel production. RSC Adv [Internet]. 2021 Jun 8;11(33):20465–78. Available from: <URL>.
- 29. Dasta P, Pratap Singh A, Pratap Singh A. Zinc oxide nanoparticle as a heterogeneous catalyst in generation of biodiesel. Mater Today Proc [Internet]. 2022 Jan 1;52:751–7. Available from: <URL>.
- 30. Ghanbari Zadeh Fard R, Jafari D, Palizian M, Esfandyari M. Biodiesel production from beef tallow using the barium oxide catalyst. React Kinet Mech Catal [Internet]. 2019 Dec 14;128(2):723–38. Available from: <URL>.
- 31. Carlucci C, Degennaro L, Luisi R. Titanium dioxide as a catalyst in biodiesel production. Catalysts [Internet]. 2019 Jan 11;9(1):75. Available from: <URL>.
- 32. Esmi F, Borugadda VB, Dalai AK. Heteropoly acids as supported solid acid catalysts for sustainable biodiesel production using vegetable oils: A review. Catal Today [Internet]. 2022 Nov 15;404:19–34. Available from: <URL>.
- 33. Buchori L, Widayat W, Muraza O, Amali MI, Maulida RW, Prameswari J. Effect of temperature and concentration of zeolite catalysts from geothermal solid waste in biodiesel production from used cooking oil by esterification–transesterification process. Processes [Internet]. 2020 Dec 10;8(12):1629. Available from: <URL>.
- 34. Dhinagaran G, Vijayakumar G, Prashanna Suvaitha S, Harichandran G, Venkatachalam K. Conversion of neem oil (Azadirachta indica) to biodiesel over SBA-15 supported sulphated zirconia catalysts. Catal Letters [Internet]. 2024 May 1;154(5):2124–39. Available from: <URL>.
- 35. Fan X, Niehus X, Sandoval G. Lipases as biocatalyst for biodiesel production. In: Methods in Molecular Biology [Internet]. Humana Press; 2012. p. 471–83. Available from: <URL>.
- 36. Mate DM, Alcalde M. Laccase: A multi‐purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol [Internet]. 2017 Nov 3;10(6):1457–67. Available from: <URL>.
- 37. Ferrero GO, Faba EMS, Eimer GA. Biodiesel production from alternative raw materials using a heterogeneous low ordered biosilicified enzyme as biocatalyst. Biotechnol Biofuels [Internet]. 2021 Dec 15;14(1):67. Available from: <URL>.
- 38. Maiti S, Chowdhury AR, Das AK. Benzoselenadiazole-based nanoporous Covalent Organic Polymer (COP) as efficient room temperature heterogeneous catalyst for biodiesel production. Microporous Mesoporous Mater [Internet]. 2019 Jul 15;283:39–47. Available from: <URL>.
- 39. Gomes R, Bhanja P, Bhaumik A. Sulfonated porous organic polymer as a highly efficient catalyst for the synthesis of biodiesel at room temperature. J Mol Catal A Chem [Internet]. 2016 Jan 1;411:110–6. Available from: <URL>.
- 40. Yao J, Ji L, Sun P, Zhang L, Xu N. Low boiling point organic amine-catalyzed transesterification of cottonseed oil to biodiesel with trace amount of KOH as co-catalyst. Fuel [Internet]. 2010 Dec 1;89(12):3871–5. Available from: <URL>.
- 41. Saikia K, Ngaosuwan K, Assabumrungrat S, Singh B, Okoye PU, Rashid U, et al. Sulphonated cellulose-based carbon as a green heterogeneous catalyst for biodiesel production: Process optimization and kinetic studies. Biomass and Bioenergy [Internet]. 2023 Jun 1;173:106799. Available from: <URL>.
- 42. Deandra PP, Santoso H, Witono JRB. Carbon based sulfonated catalyst as an environment friendly material: A review. In: AIP Conference Proceedings [Internet]. American Institute of Physics Inc.; 2022. p. 040006. Available from: <URL>.
- 43. Nazloo EK, Moheimani NR, Ennaceri H. Graphene-based catalysts for biodiesel production: Characteristics and performance. Sci Total Environ [Internet]. 2023 Feb 10;859:160000. Available from: <URL>.
- 44. Athar Hussain A, Nazir S, Ullah Khan A, Tahir K, Albalawi K, Ibrahim MM, et al. Preparation of zinc oxide graphted nickel incorporated mesoporous SBA-16 doped graphene oxide: An efficient catalyst for transesterification of waste edible oil to biodiesel and photocatalytic degradation of organic dyes. Inorg Chem Commun [Internet]. 2022 May 1;139:109379. Available from: <URL>.
- 45. Cirujano FG, Corma A, Llabrés i Xamena FX. Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catal Today [Internet]. 2015 Nov 15;257(Part 2):213–20. Available from: <URL>.
- 46. Pangestu T, Kurniawan Y, Soetaredjo FE, Santoso SP, Irawaty W, Yuliana M, et al. The synthesis of biodiesel using copper based metal-organic framework as a catalyst. J Environ Chem Eng [Internet]. 2019 Aug 1;7(4):103277. Available from: <URL>.
- 47. Hassan HMA, Betiha MA, Mohamed SK, El-Sharkawy EA, Ahmed EA. Salen- Zr(IV) complex grafted into amine-tagged MIL-101(Cr) as a robust multifunctional catalyst for biodiesel production and organic transformation reactions. Appl Surf Sci [Internet]. 2017 Aug 1;412:394–404. Available from: <URL>.
- 48. Jamil U, Husain Khoja A, Liaquat R, Raza Naqvi S, Nor Nadyaini Wan Omar W, Aishah Saidina Amin N. Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: A process optimization study. Energy Convers Manag [Internet]. 2020 Jul 1;215:112934. Available from: <URL>.
- 49. Cheng J, Qian L, Guo H, Mao Y, Shao Y, Yang W. A new aminobenzoate-substituted s-triazin-based Zr metal organic frameworks as efficient catalyst for biodiesel production from microalgal lipids. Fuel Process Technol [Internet]. 2022 Dec 15;238:107487. Available from: <URL>.
- 50. Ruatpuia JVL, Changmai B, Pathak A, Alghamdi LA, Kress T, Halder G, et al. Green biodiesel production from Jatropha curcas oil using a carbon-based solid acid catalyst: A process optimization study. Renew Energy [Internet]. 2023 Apr 1;206:597–608. Available from: <URL>.
- 51. Chhabra M, Saini BS, Dwivedi G, Behura AK, Kumar A, Jain S, et al. Investigation of the shelf life of the optimized Neem biodiesel and its execution and excretion characteristics on automotive diesel engine. Energy Sources, Part A Recover Util Environ Eff [Internet]. 2021 Feb 1;Article in Press. Available from: <URL>.
- 52. Jabeen M. A comprehensive review on analytical applications of hydrazone derivatives. J Turkish Chem Soc Sect A Chem [Internet]. 2022 Aug 31;9(3):663–98. Available from: <URL>.
- 53. Jabeen M, Mehmood K, Khan MUA, Aslam N, Zafar AM, Sajid N, et al. Microwave and conventional synthesis of Co(II), Cu(II) and Ni(II) metal complexes of some acid hydrazones with their spectral characterization and biological evaluation. Pak J Pharm Sci [Internet]. 2018 May 13;31(3(Supplementary)):1003–11. Available from: <URL>.
- 54. Jabeen M, Mehmood K, Khan MA, Nasrullah M, Maqbool T, Jabeen F, et al. Comparative study of microwave assisted and conventional synthesis of furfuraldehyde based hydrazone derivatives and their metal complexes with biological evaluation. Asian J Chem [Internet]. 2017;29(2):431–6. Available from: <URL>.
- 55. Rondestvedt CS. Arylation of unsaturated compounds by diazonium salts (The meerwein arylation reaction). In: Organic Reactions [Internet]. Wiley; 2011. p. 225–59. Available from: <URL>.
- 56. Suraj CK, Anand K, Sundararajan T. Investigation of biodiesel production methods by altering free fatty acid content in vegetable oils. Biofuels [Internet]. 2020 Jul 3;11(5):587–95. Available from: <URL>.
- 57. Helrich K. Official methods of analysis of the association of official analytical chemists [Internet]. Vol. 3. Association of Official Analytical Chemists.; 1990. Available from: <URL>.
- 58. Daramola MO, Mtshali K, Senokoane L, Fayemiwo OM. Influence of operating variables on the transesterification of waste cooking oil to biodiesel over sodium silicate catalyst: A statistical approach. J Taibah Univ Sci [Internet]. 2016 Sep 16;10(5):675–84. Available from: <URL>.
- 59. Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl Energy [Internet]. 2010 Apr 1;87(4):1083–95. Available from: <URL>.
- 60. Chozhavendhan S, Vijay Pradhap Singh M, Fransila B, Praveen Kumar R, Karthiga Devi G. A review on influencing parameters of biodiesel production and purification processes. Curr Res Green Sustain Chem [Internet]. 2020 Feb 1;1–2:1–6. Available from: <URL>.
- 61. Zuo D, Lane J, Culy D, Schultz M, Pullar A, Waxman M. Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production. Appl Catal B Environ [Internet]. 2013 Jan 17;129:342–50. Available from: <URL>.
- 62. Simonelli G, Ferreira Júnior JM, Pires CA de M, Santos LCL dos. Biodiesel production using co-solvents: A review. Res Soc Dev [Internet]. 2020 Jan 1;9(1):e99911672. Available from: <URL>.
- 63. Ban S, Shrestha R, Chaudhary Y, Jeon JK, Joshi R, Uprety B. Process simulation and economic analysis of dolomite catalyst based biodiesel production from Nepalese Jatropha Curcas. Clean Chem Eng [Internet]. 2022 Jun 1;2:100029. Available from: <URL>.
- 64. Gebremariam SN, Marchetti JM. Process simulation and techno-economic performance evaluation of alternative technologies for biodiesel production from low value non-edible oil. Biomass and Bioenergy [Internet]. 2021 Jun 1;149:106102. Available from: <URL>.
- 65. Thanh LT, Okitsu K, Boi L Van, Maeda Y. Catalytic technologies for biodiesel fuel production and utilization of glycerol: A review. Catalysts [Internet]. 2012 Mar 22;2(1):191–222. Available from: <URL>.
- 66. Aboelazayem O, El-Gendy NS, Abdel-Rehim AA, Ashour F, Sadek MA. Biodiesel production from castor oil in Egypt: Process optimisation, kinetic study, diesel engine performance and exhaust emissions analysis. Energy [Internet]. 2018 Aug 15;157:843–52. Available from: <URL>.
- 67. Inayat A, Jamil F, Ghenai C, Kamil M, Bokhari A, Waris A, et al. Biodiesel synthesis from neem oil using neem seeds residue as sustainable catalyst support. Biomass Convers Biorefinery [Internet]. 2021 Aug 6;Article in Press. Available from: <URL>.
- 68. Changmai B, Vanlalveni C, Ingle AP, Bhagat R, Rokhum SL. Widely used catalysts in biodiesel production: A review. RSC Adv [Internet]. 2020 Nov 13;10(68):41625–79. Available from: <URL>.
- 69. Musa H, N. Usman S. Preparation and antimicrobial evaluation of neem oil alkyd resin and its application as binder in oil-based paint. Environ Nat Resour Res [Internet]. 2016 May 7;6(2):92. Available from: <URL>.
- 70. Taiwo AG, Ijaola TO, Lawal SO, LanreIyanda YA. Characterization of neem seed oil and its biodiesel (B100). NIPES J Sci Technol Res [Internet]. 2020 Jun 1;2(2):178. Available from: <URL>.
- 71. Hamadou B, Djomdi, Falama RZ, Delattre C, Pierre G, Dubessay P, et al. Influence of physicochemical characteristics of neem seeds (Azadirachta indica A. Juss) on biodiesel production. Biomolecules [Internet]. 2020 Apr 17;10(4):616. Available from: <URL>.
- 72. Hasni K, Ilham Z, Dharma S, Varman M. Optimization of biodiesel production from Brucea javanica seeds oil as novel non-edible feedstock using response surface methodology. Energy Convers Manag [Internet]. 2017 Oct 1;149:392–400. Available from: <URL>.
- 73. Devasan R, Ruatpuia JVL, Gouda SP, Kodgire P, Basumatary S, Halder G, et al. Microwave-assisted biodiesel production using bio-waste catalyst and process optimization using response surface methodology and kinetic study. Sci Rep [Internet]. 2023 Feb 13;13(1):2570. Available from: <URL>.
- 74. Muthu H, SathyaSelvabala V, Varathachary TK, Kirupha Selvaraj D, Nandagopal J, Subramanian S. Synthesis of biodiesel from Neem oil using sulfated zirconia via tranesterification. Brazilian J Chem Eng [Internet]. 2010 Dec;27(4):601–8. Available from: <URL>.
- 75. Banu HD, Shallangwa TB, Joseph I, Odey Magu T, Hitler L, Ahmed S. Biodiesel production from neem seed (Azadirachta indica) oil using calcium oxide as heterogeneous catalyst. J Phys Chem Biophys [Internet]. 2018 Nov 27;8(2):1000266. Available from: <URL>.
- 76. Gunawardena S, Hewa Walpita D, Ismail M. Method for quantification of methanol and sulfuric acid required for esterification of high free fatty acid oils in biodiesel production. Int J Renew Energy Res [Internet]. 2017;7(4):1639–45. Available from: <URL>.
Yıl 2024,
Cilt: 11 Sayı: 4, 1565 - 1580
Mussarat Jabeen
,
Irum Razzaq
,
Sajida Noureen
,
Syed Ubaid Hussain
,
Noreen Aslam
,
Ansa Zafar
,
K Mehmood
,
Misbah Ul Ain Khan
Kaynakça
- 1. Ali MH, Mashud M, Rubel MR, Ahmad RH. Biodiesel from neem oil as an alternative fuel for diesel engine. Procedia Eng [Internet]. 2013 Jan 1;56:625–30. Available from: <URL>.
- 2. Bouzarovski S. Transforming urban energy demand: A timely challenge. Front Sustain Cities [Internet]. 2020 May 27;2:29. Available from: <URL>.
- 3. Asıf M, Muneer T. Energy supply, its demand and security issues for developed and emerging economies. Renew Sustain Energy Rev [Internet]. 2007 Sep 1;11(7):1388–413. Available from: <URL>.
- 4. Rastogi A, Shaban M, Saxena S, Singh TP. Neem biodiesel: An alternative fuel. Innovare J Eng Technol [Internet]. 2021 Nov 1;9:18–21. Available from: <URL>.
- 5. Banik SK, Rouf M. A., Rabeya T, Khanam M, Sajal SI, Sabur SB, et al. Production of biodiesel from neem seed oil. Bangladesh J Sci Ind Res [Internet]. 2018;53(3):211–8. Available from: <URL>.
- 6. Demirbas A. Characterization of biodiesel fuels. Energy Sources, Part A Recover Util Environ Eff [Internet]. 2009 Jun 12;31(11):889–96. Available from: <URL>.
- 7. Dueso C, Muñoz M, Moreno F, Arroyo J, Gil-Lalaguna N, Bautista A, et al. Performance and emissions of a diesel engine using sunflower biodiesel with a renewable antioxidant additive from bio-oil. Fuel [Internet]. 2018 Dec 15;234:276–85. Available from: <URL>.
- 8. Sentanuhady J, Hasan WH, Muflikhun MA. Recent progress on the implementation of renewable biodiesel fuel for automotive and power plants: Raw materials perspective. Riccio A, editor. Adv Mater Sci Eng [Internet]. 2022 Jan 4;2022(1):5452942. Available from: <URL>.
- 9. Ubaid Hussain S, Noureen S, Razzaq I, Alkter S, Mehmood F, Razzaq Z, et al. Optimization and characterization of acid catalyzed castor biodiesel and its blends. J Turkish Chem Soc Sect A Chem [Internet]. 2022 Nov 30;9(4):1007–22. Available from: <URL>.
- 10. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M. Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev [Internet]. 2012 Jan 1;16(1):143–69. Available from: <URL>.
- 11. Dhar Dubey KK, Jeyaseelan C, Upadhyaya KC, Chimote V, Veluchamy R, Kumar A. Biodiesel production from Hiptage benghalensis seed oil. Ind Crops Prod [Internet]. 2020 Feb 1;144:112027. Available from: <URL>.
- 12. Demirbas A. Potential resources of non-edible oils for biodiesel. Energy Sources, Part B Econ Planning, Policy [Internet]. 2009 Oct 30;4(3):310–4. Available from: <URL>.
- 13. Fadairo A, Adeyemi G, Ogunkunle T, Ling K, Rasouli V, Effiong E, et al. Study the suitability of neem seed oil for formulation of eco-friendly oil based drilling fluid. Pet Res [Internet]. 2021 Sep 1;6(3):283–90. Available from: <URL>.
- 14. Thangaraj B, Solomon PR, Muniyandi B, Ranganathan S, Lin L. Catalysis in biodiesel production—a review. Clean Energy [Internet]. 2019 Feb 27;3(1):2–23. Available from: <URL>.
- 15. Awolu OO, Layokun SK. Optimization of two-step transesterification production of biodiesel from neem (Azadirachta indica) oil. Int J Energy Environ Eng [Internet]. 2013 Nov 14;4(1):39. Available from: <URL>.
- 16. Rizwanul Fattah IM, Ong HC, Mahlia TMI, Mofijur M, Silitonga AS, Rahman SMA, et al. State of the art of catalysts for biodiesel production. Front Energy Res [Internet]. 2020 Jun 19;8:546060. Available from: <URL>.
- 17. Pasae Y, Tangdilintin S, Bulo L, Allo EL. The contribution of heterogeneous and homogeneous catalysts towards biodiesel quality. J Phys Conf Ser [Internet]. 2020 Feb 1;1464(1):012054. Available from: <URL>.
- 18. Rijo B, Fernando E, Ramos M, Dias APS. Biodiesel production over sodium carbonate and bicarbonate catalysts. Fuel [Internet]. 2022 Sep 1;323:124383. Available from: <URL>.
- 19. Basumatary SF, Patir K, Das B, Saikia P, Brahma S, Basumatary B, et al. Production of renewable biodiesel using metal organic frameworks based materials as efficient heterogeneous catalysts. J Clean Prod [Internet]. 2022 Jul 15;358:131955. Available from: <URL>.
- 20. Kusmiyati K, Prasetyoko D, Murwani S, Nur Fadhilah M, Oetami TP, Hadiyanto H, et al. Biodiesel production from reutealis trisperma oil using KOH impregnated eggshell as a heterogeneous catalyst. Energies [Internet]. 2019 Sep 28;12(19):3714. Available from: <URL>.
- 21. Feng W, Tie X, Duan X, Yan S, Fang S, Wang T, et al. Polymer functionalization of biochar-based heterogeneous catalyst with acid-base bifunctional catalytic activity for conversion of the insect lipid into biodiesel. Arab J Chem [Internet]. 2023 Jul 1;16(7):104814. Available from: <URL>.
- 22. Tahvildari K, Anaraki YN, Fazaeli R, Mirpanji S, Delrish E. The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil. J Environ Heal Sci Eng [Internet]. 2015 Dec 23;13(1):73. Available from: <URL>.
- 23. Demirbas A. Biodiesel from vegetable oils with MgO catalytic transesterification in supercritical methanol. Energy Sources, Part A Recover Util Environ Eff [Internet]. 2008 Jul 29;30(17):1645–51. Available from: <URL>.
- 24. Arshad S, Ahmad M, Munir M, Sultana S, Zafar M, Dawood S, et al. Assessing the potential of green CdO2 nano-catalyst for the synthesis of biodiesel using non-edible seed oil of Malabar Ebony. Fuel [Internet]. 2023 Feb 1;333:126492. Available from: <URL>.
- 25. Manurung R, Parinduri SZDM, Hasibuan R, Tarigan BH, Siregar AGA. Synthesis of nano-CaO catalyst with SiO2 matrix based on palm shell ash as catalyst support for one cycle developed in the palm biodiesel process. Case Stud Chem Environ Eng [Internet]. 2023 Jun 1;7:100345. Available from: <URL>.
- 26. Nabgan W, Nabgan B, Ikram M, Jadhav AH, Ali MW, Ul-Hamid A, et al. Synthesis and catalytic properties of calcium oxide obtained from organic ash over a titanium nanocatalyst for biodiesel production from dairy scum. Chemosphere [Internet]. 2022 Mar 1;290:133296. Available from: <URL>.
- 27. Eugen Raducanu C, Ionuta Gavrila A, Dobre T, Chipurici P. Study on alumina supported heterogeneo us catalysts for biodiesel production. Rev Chim [Internet]. 2018;69(8):2138–43. Available from: <URL>.
- 28. Wang A, Quan W, Zhang H, Li H, Yang S. Heterogeneous ZnO-containing catalysts for efficient biodiesel production. RSC Adv [Internet]. 2021 Jun 8;11(33):20465–78. Available from: <URL>.
- 29. Dasta P, Pratap Singh A, Pratap Singh A. Zinc oxide nanoparticle as a heterogeneous catalyst in generation of biodiesel. Mater Today Proc [Internet]. 2022 Jan 1;52:751–7. Available from: <URL>.
- 30. Ghanbari Zadeh Fard R, Jafari D, Palizian M, Esfandyari M. Biodiesel production from beef tallow using the barium oxide catalyst. React Kinet Mech Catal [Internet]. 2019 Dec 14;128(2):723–38. Available from: <URL>.
- 31. Carlucci C, Degennaro L, Luisi R. Titanium dioxide as a catalyst in biodiesel production. Catalysts [Internet]. 2019 Jan 11;9(1):75. Available from: <URL>.
- 32. Esmi F, Borugadda VB, Dalai AK. Heteropoly acids as supported solid acid catalysts for sustainable biodiesel production using vegetable oils: A review. Catal Today [Internet]. 2022 Nov 15;404:19–34. Available from: <URL>.
- 33. Buchori L, Widayat W, Muraza O, Amali MI, Maulida RW, Prameswari J. Effect of temperature and concentration of zeolite catalysts from geothermal solid waste in biodiesel production from used cooking oil by esterification–transesterification process. Processes [Internet]. 2020 Dec 10;8(12):1629. Available from: <URL>.
- 34. Dhinagaran G, Vijayakumar G, Prashanna Suvaitha S, Harichandran G, Venkatachalam K. Conversion of neem oil (Azadirachta indica) to biodiesel over SBA-15 supported sulphated zirconia catalysts. Catal Letters [Internet]. 2024 May 1;154(5):2124–39. Available from: <URL>.
- 35. Fan X, Niehus X, Sandoval G. Lipases as biocatalyst for biodiesel production. In: Methods in Molecular Biology [Internet]. Humana Press; 2012. p. 471–83. Available from: <URL>.
- 36. Mate DM, Alcalde M. Laccase: A multi‐purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol [Internet]. 2017 Nov 3;10(6):1457–67. Available from: <URL>.
- 37. Ferrero GO, Faba EMS, Eimer GA. Biodiesel production from alternative raw materials using a heterogeneous low ordered biosilicified enzyme as biocatalyst. Biotechnol Biofuels [Internet]. 2021 Dec 15;14(1):67. Available from: <URL>.
- 38. Maiti S, Chowdhury AR, Das AK. Benzoselenadiazole-based nanoporous Covalent Organic Polymer (COP) as efficient room temperature heterogeneous catalyst for biodiesel production. Microporous Mesoporous Mater [Internet]. 2019 Jul 15;283:39–47. Available from: <URL>.
- 39. Gomes R, Bhanja P, Bhaumik A. Sulfonated porous organic polymer as a highly efficient catalyst for the synthesis of biodiesel at room temperature. J Mol Catal A Chem [Internet]. 2016 Jan 1;411:110–6. Available from: <URL>.
- 40. Yao J, Ji L, Sun P, Zhang L, Xu N. Low boiling point organic amine-catalyzed transesterification of cottonseed oil to biodiesel with trace amount of KOH as co-catalyst. Fuel [Internet]. 2010 Dec 1;89(12):3871–5. Available from: <URL>.
- 41. Saikia K, Ngaosuwan K, Assabumrungrat S, Singh B, Okoye PU, Rashid U, et al. Sulphonated cellulose-based carbon as a green heterogeneous catalyst for biodiesel production: Process optimization and kinetic studies. Biomass and Bioenergy [Internet]. 2023 Jun 1;173:106799. Available from: <URL>.
- 42. Deandra PP, Santoso H, Witono JRB. Carbon based sulfonated catalyst as an environment friendly material: A review. In: AIP Conference Proceedings [Internet]. American Institute of Physics Inc.; 2022. p. 040006. Available from: <URL>.
- 43. Nazloo EK, Moheimani NR, Ennaceri H. Graphene-based catalysts for biodiesel production: Characteristics and performance. Sci Total Environ [Internet]. 2023 Feb 10;859:160000. Available from: <URL>.
- 44. Athar Hussain A, Nazir S, Ullah Khan A, Tahir K, Albalawi K, Ibrahim MM, et al. Preparation of zinc oxide graphted nickel incorporated mesoporous SBA-16 doped graphene oxide: An efficient catalyst for transesterification of waste edible oil to biodiesel and photocatalytic degradation of organic dyes. Inorg Chem Commun [Internet]. 2022 May 1;139:109379. Available from: <URL>.
- 45. Cirujano FG, Corma A, Llabrés i Xamena FX. Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catal Today [Internet]. 2015 Nov 15;257(Part 2):213–20. Available from: <URL>.
- 46. Pangestu T, Kurniawan Y, Soetaredjo FE, Santoso SP, Irawaty W, Yuliana M, et al. The synthesis of biodiesel using copper based metal-organic framework as a catalyst. J Environ Chem Eng [Internet]. 2019 Aug 1;7(4):103277. Available from: <URL>.
- 47. Hassan HMA, Betiha MA, Mohamed SK, El-Sharkawy EA, Ahmed EA. Salen- Zr(IV) complex grafted into amine-tagged MIL-101(Cr) as a robust multifunctional catalyst for biodiesel production and organic transformation reactions. Appl Surf Sci [Internet]. 2017 Aug 1;412:394–404. Available from: <URL>.
- 48. Jamil U, Husain Khoja A, Liaquat R, Raza Naqvi S, Nor Nadyaini Wan Omar W, Aishah Saidina Amin N. Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: A process optimization study. Energy Convers Manag [Internet]. 2020 Jul 1;215:112934. Available from: <URL>.
- 49. Cheng J, Qian L, Guo H, Mao Y, Shao Y, Yang W. A new aminobenzoate-substituted s-triazin-based Zr metal organic frameworks as efficient catalyst for biodiesel production from microalgal lipids. Fuel Process Technol [Internet]. 2022 Dec 15;238:107487. Available from: <URL>.
- 50. Ruatpuia JVL, Changmai B, Pathak A, Alghamdi LA, Kress T, Halder G, et al. Green biodiesel production from Jatropha curcas oil using a carbon-based solid acid catalyst: A process optimization study. Renew Energy [Internet]. 2023 Apr 1;206:597–608. Available from: <URL>.
- 51. Chhabra M, Saini BS, Dwivedi G, Behura AK, Kumar A, Jain S, et al. Investigation of the shelf life of the optimized Neem biodiesel and its execution and excretion characteristics on automotive diesel engine. Energy Sources, Part A Recover Util Environ Eff [Internet]. 2021 Feb 1;Article in Press. Available from: <URL>.
- 52. Jabeen M. A comprehensive review on analytical applications of hydrazone derivatives. J Turkish Chem Soc Sect A Chem [Internet]. 2022 Aug 31;9(3):663–98. Available from: <URL>.
- 53. Jabeen M, Mehmood K, Khan MUA, Aslam N, Zafar AM, Sajid N, et al. Microwave and conventional synthesis of Co(II), Cu(II) and Ni(II) metal complexes of some acid hydrazones with their spectral characterization and biological evaluation. Pak J Pharm Sci [Internet]. 2018 May 13;31(3(Supplementary)):1003–11. Available from: <URL>.
- 54. Jabeen M, Mehmood K, Khan MA, Nasrullah M, Maqbool T, Jabeen F, et al. Comparative study of microwave assisted and conventional synthesis of furfuraldehyde based hydrazone derivatives and their metal complexes with biological evaluation. Asian J Chem [Internet]. 2017;29(2):431–6. Available from: <URL>.
- 55. Rondestvedt CS. Arylation of unsaturated compounds by diazonium salts (The meerwein arylation reaction). In: Organic Reactions [Internet]. Wiley; 2011. p. 225–59. Available from: <URL>.
- 56. Suraj CK, Anand K, Sundararajan T. Investigation of biodiesel production methods by altering free fatty acid content in vegetable oils. Biofuels [Internet]. 2020 Jul 3;11(5):587–95. Available from: <URL>.
- 57. Helrich K. Official methods of analysis of the association of official analytical chemists [Internet]. Vol. 3. Association of Official Analytical Chemists.; 1990. Available from: <URL>.
- 58. Daramola MO, Mtshali K, Senokoane L, Fayemiwo OM. Influence of operating variables on the transesterification of waste cooking oil to biodiesel over sodium silicate catalyst: A statistical approach. J Taibah Univ Sci [Internet]. 2016 Sep 16;10(5):675–84. Available from: <URL>.
- 59. Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl Energy [Internet]. 2010 Apr 1;87(4):1083–95. Available from: <URL>.
- 60. Chozhavendhan S, Vijay Pradhap Singh M, Fransila B, Praveen Kumar R, Karthiga Devi G. A review on influencing parameters of biodiesel production and purification processes. Curr Res Green Sustain Chem [Internet]. 2020 Feb 1;1–2:1–6. Available from: <URL>.
- 61. Zuo D, Lane J, Culy D, Schultz M, Pullar A, Waxman M. Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production. Appl Catal B Environ [Internet]. 2013 Jan 17;129:342–50. Available from: <URL>.
- 62. Simonelli G, Ferreira Júnior JM, Pires CA de M, Santos LCL dos. Biodiesel production using co-solvents: A review. Res Soc Dev [Internet]. 2020 Jan 1;9(1):e99911672. Available from: <URL>.
- 63. Ban S, Shrestha R, Chaudhary Y, Jeon JK, Joshi R, Uprety B. Process simulation and economic analysis of dolomite catalyst based biodiesel production from Nepalese Jatropha Curcas. Clean Chem Eng [Internet]. 2022 Jun 1;2:100029. Available from: <URL>.
- 64. Gebremariam SN, Marchetti JM. Process simulation and techno-economic performance evaluation of alternative technologies for biodiesel production from low value non-edible oil. Biomass and Bioenergy [Internet]. 2021 Jun 1;149:106102. Available from: <URL>.
- 65. Thanh LT, Okitsu K, Boi L Van, Maeda Y. Catalytic technologies for biodiesel fuel production and utilization of glycerol: A review. Catalysts [Internet]. 2012 Mar 22;2(1):191–222. Available from: <URL>.
- 66. Aboelazayem O, El-Gendy NS, Abdel-Rehim AA, Ashour F, Sadek MA. Biodiesel production from castor oil in Egypt: Process optimisation, kinetic study, diesel engine performance and exhaust emissions analysis. Energy [Internet]. 2018 Aug 15;157:843–52. Available from: <URL>.
- 67. Inayat A, Jamil F, Ghenai C, Kamil M, Bokhari A, Waris A, et al. Biodiesel synthesis from neem oil using neem seeds residue as sustainable catalyst support. Biomass Convers Biorefinery [Internet]. 2021 Aug 6;Article in Press. Available from: <URL>.
- 68. Changmai B, Vanlalveni C, Ingle AP, Bhagat R, Rokhum SL. Widely used catalysts in biodiesel production: A review. RSC Adv [Internet]. 2020 Nov 13;10(68):41625–79. Available from: <URL>.
- 69. Musa H, N. Usman S. Preparation and antimicrobial evaluation of neem oil alkyd resin and its application as binder in oil-based paint. Environ Nat Resour Res [Internet]. 2016 May 7;6(2):92. Available from: <URL>.
- 70. Taiwo AG, Ijaola TO, Lawal SO, LanreIyanda YA. Characterization of neem seed oil and its biodiesel (B100). NIPES J Sci Technol Res [Internet]. 2020 Jun 1;2(2):178. Available from: <URL>.
- 71. Hamadou B, Djomdi, Falama RZ, Delattre C, Pierre G, Dubessay P, et al. Influence of physicochemical characteristics of neem seeds (Azadirachta indica A. Juss) on biodiesel production. Biomolecules [Internet]. 2020 Apr 17;10(4):616. Available from: <URL>.
- 72. Hasni K, Ilham Z, Dharma S, Varman M. Optimization of biodiesel production from Brucea javanica seeds oil as novel non-edible feedstock using response surface methodology. Energy Convers Manag [Internet]. 2017 Oct 1;149:392–400. Available from: <URL>.
- 73. Devasan R, Ruatpuia JVL, Gouda SP, Kodgire P, Basumatary S, Halder G, et al. Microwave-assisted biodiesel production using bio-waste catalyst and process optimization using response surface methodology and kinetic study. Sci Rep [Internet]. 2023 Feb 13;13(1):2570. Available from: <URL>.
- 74. Muthu H, SathyaSelvabala V, Varathachary TK, Kirupha Selvaraj D, Nandagopal J, Subramanian S. Synthesis of biodiesel from Neem oil using sulfated zirconia via tranesterification. Brazilian J Chem Eng [Internet]. 2010 Dec;27(4):601–8. Available from: <URL>.
- 75. Banu HD, Shallangwa TB, Joseph I, Odey Magu T, Hitler L, Ahmed S. Biodiesel production from neem seed (Azadirachta indica) oil using calcium oxide as heterogeneous catalyst. J Phys Chem Biophys [Internet]. 2018 Nov 27;8(2):1000266. Available from: <URL>.
- 76. Gunawardena S, Hewa Walpita D, Ismail M. Method for quantification of methanol and sulfuric acid required for esterification of high free fatty acid oils in biodiesel production. Int J Renew Energy Res [Internet]. 2017;7(4):1639–45. Available from: <URL>.