Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 10 Sayı: 1, 18 - 36, 30.04.2023
https://doi.org/10.30900/kafkasegt.1163539

Öz

Kaynakça

  • Ainley, J., Pratt, D. And Hansen, A. (2006). Connecting engagement and focus in pedagogic task design. British Educational Research Journal, 32(1), 23-38.
  • Baturo, A., Cooper, T., Doyle, K. And Grant, E. (2007). Using three levels in design of effective teacher-education tasks: The case of promoting conflicts with intuitive understandings in probability. Journal of Mathematics Teacher Education, 10, 251-259.
  • Bozkurt, A. (2012). Matematik öğretmenlerinin matematiksel etkinlik kavramına dair algıları. Eğitim ve Bilim, 37(166), 101-115.
  • Bozkurt, A. (2018). Ortaokul 6. Sınıf matematik ders kitabındaki etkinliklerin amaç, öğrenci çalışma biçimi ve uygulanabilirlik yönleriyle değerlendirilmesi. Elektronik Sosyal Bilimler Dergisi, 17(66), 535-548.
  • Brown, G. T., &Harris, L. R. (2009). The complexity of teachers’ conceptions of assessment: Tensions between the needs of schools and students. Assessment in Education: Principles, Policy & Practice, 16(3), 365-381.
  • Creswell, J. W. (2007). Qualitative inquiry & research design: Choosing among five approaches (2nd ed.). London: Sage Publications.
  • Daniels, H. (2001). Vygotsky ve pedagoji. Routledge.
  • Doyle, W. (1983). Academic work. Review of Educational Research, 53, 159-199.
  • Doyle, W. (1988). Work in matehematics classes: The context of students‟ thinking during instruction. Educational Psychologist, 23(2), 167-180.
  • Doyle, W. And Carter, K. (1984). Academic tasks in classrooms. Curriculum Inquiry. 14(2), 129-149.
  • Drijvers, P.,&Trouche, L. (2008). Fromartifactstoinstruments: A theoretical frame work behind the orchestra metaphor. In G. W. Blume& M. K. Heid (Eds.), Research on technologyandtheteachingandlearning of mathematics: Vol. 2. Casesandperspectives(pp. 363-392). Charlotte, NC: Information Age.
  • Gürbüz, R. ve Toprak, Z. (2014). Aritmetikten cebire geçişi sağlayacak etkinliklerin tasarlanması, uygulanması ve değerlendirilmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi (NEF-EFMED), 8(1), 178-203.
  • Güzel, M. (2020). Matematiksel Öğrenme Etkinliklerinin Tasarım Ve Uygulama Niteliğinin Değerlendirilmesi İçin Bir Model Önerisi (Doktora Tezi, Gaziantep Üniversitesi, Gaziantep).
  • Haggarty, L., & Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French and German classrooms: Who gets an opportunity to learn what?. British educational research journal, 28(4), 567-590.
  • Hardman, J. (2019). Towards a pedagogical model of teaching with ICTs for mathematics attainment in primary school: A review of studies 2008–2018. Heliyon, 5(5), e01726.
  • Henningsen, M. And Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 28(5), 524-549.
  • Horoks, J. and Robert, A. (2007). Task designed to highlight task-activity relationships. Journal of Mathematics Teacher Education, 10, 279-287.
  • Jones, K. And Pepin, B. (2016). Research on mathematics teachers as partners in task design. Journal of Mathematics Teacher Education, 19(2), 105-121.
  • Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. sage.
  • Lozano, M. D. (2017). Investigating task design, classroom culture and mathematics learning: an enactivist approach. ZDM, 49(6), 895-907.
  • Margolinas, C. (2013, July). Task design in mathematics education. Proceedings of ICMI study 22. In ICMI Study 22.
  • Merriam, S. B. (2015). Qualitative research: Designing, implementing, and publishing a study. In Handbook of research on scholarly publishing and research methods (pp. 125-140). IGI Global.
  • Merriam, S. B., & Bierema, L. L. (2013). Adult learning: Linking theory and practice. John Wiley & Sons.
  • Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers college record, 108(6), 1017-1054.
  • Özgen, K. (2017). Matematiksel öğrenme etkinliği türlerine yönelik kuramsal bir çalışma: fonksiyon kavramı örneklemesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17(3), 1437-1464.
  • Özmantar, M. F. ve Bingölbali, E. (2009). Etkinlik tasarım ve temel tasarım prensipleri. E. Bingölbali ve M. F. Özmantar, (Ed.). İlköğretimde Karşılaşılan Matematiksel Zorluklar ve Çözüm Önerileri. Ankara: Pegem Akademi.
  • Özmantar, M. F. ve Bingölbali, E. (2010). Etkinlik tasarımı ve temel tasarım prensipleri. E. Bingölbali ve M. F. Özmantar (Ed.), İlköğretimde karşılaşılan matematiksel zorluklar ve çözüm önerileri (2. Baskı) içinde (s. 313-348). Ankara: Pegem Akdemi.
  • Özmantar, M. F., Bozkurt, A., Demir, S., Bingölbali, E. Ve Açıl, E. (2010). Sınıf öğretmenlerinin etkinlik kavramına ilişkin algıları. Selçuk Üniversitesi Ahmet Keleşoğlu Eğitim Fakültesi Dergisi 30, 379-398.
  • Powell, A. B., Borge, I. C., Fioriti, G. I., Kondratieva, M., Koublanova, E., & Sukthankar, N. (2009). Challenging tasks and mathematics learning. In Challenging mathematics in and beyond the classroom (pp. 133-170). Springer, Boston, MA
  • Smith, M. S. And Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3(5), 344-350.
  • Sullivan, P., Clarke, D. and Clarke, B. (2013). Teaching with tasks for effective mathematics learning. New York: Springer Science+Business Media.
  • Sullivan, P., Clarke, D., & Clarke, B. (2012). Teaching with tasks for effective mathematics learning. Berlin: Springer.
  • Suzuki, K. and Harnisch, D. L. (1995, April). Measuring cognitive complexity: an analysis of performance-based assessment ın mathematics. Paper presented at the 1995 Annual Meeting of the American Educational Research Association, San Francisco, CA.
  • Swan, M. (2008). Designing multiple representation learning experience in secondary algebra. Journal of International Society for Design and Development in Education, 1(1), 1-17.
  • Tabach, M. (2011). A mathematics teacher’s practice in a technological environment: A case study analysis using two complementary theories. Technology, Knowledge and Learning, 16(3), 247-265.
  • Törnroos, J. (2005). Mathematics textbooks, opportunity to learn and student achievement. Studies in educational evaluation, 31(4), 315-327.
  • Vaismoradi, M., Turunen, H., & Bondas, T. (2013). Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. Nursing & health sciences, 15(3), 398-405.
  • Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2016). Elementary and middle school mathematics. London: Pearson Education UK.
  • Wertsch, J.V. (1998) Mind as Action, Oxford: Oxford University Press.
  • Yeşildere İmre S. Ortaokul Matematik Öğretim Programları, Özmantar, Mehmet Fatih Akkoç, Hatice Kuşdemir-Kayıran Özyurt Melike, Editör, Pegem Akademi, Ankara, ss.331-347, 2018
  • Yin, R. K. (2003). Designing case studies. Qualitative research methods, 5(14), 359-386.
  • Yin, R. K. (2014). Getting started: How to know whether and when to use the case study as a research method. Case study research: design and methods, 5, 2-25.

Material Features That Determine the Activity Preferences of Mathematics Teachers

Yıl 2023, Cilt: 10 Sayı: 1, 18 - 36, 30.04.2023
https://doi.org/10.30900/kafkasegt.1163539

Öz

Researchers working on activity-based mathematics teaching suggest that the materials deeply shape the design and implementations. Despite this effect, empirical knowledge about how teachers approach the materials in their activity selection, and which features of the materials are decisive in their preferences is quite limited. Hence this study aims to designate material features determinant in teachers’ mathematical activity preferences. This research was designed as a multiple case study and was conducted with three secondary school mathematics teachers. During the data collection process, six consecutive semi-structured interviews were conducted with the participants. While structuring the interview process, multiple activities were prepared with different materials to serve the same gain. The data were analyzed by thematic analysis method. The analyses yielded five distinct features that accounted for teachers’ selection and preferences of mathematical activities with regard to materials: serving to the mathematical gains, functionality, accessibility, being proficient in use and student familiarity. The findings showed that teachers' activity preferences had a complex structure and pointed out that instructional decisions were not only shaped on a pedagogical basis and were not only concerned with students' mathematical development. Based on the evaluations of the teachers, it was concluded that the predictions about the affordances and constraints of the materials were decisive in the activity selection. 

Kaynakça

  • Ainley, J., Pratt, D. And Hansen, A. (2006). Connecting engagement and focus in pedagogic task design. British Educational Research Journal, 32(1), 23-38.
  • Baturo, A., Cooper, T., Doyle, K. And Grant, E. (2007). Using three levels in design of effective teacher-education tasks: The case of promoting conflicts with intuitive understandings in probability. Journal of Mathematics Teacher Education, 10, 251-259.
  • Bozkurt, A. (2012). Matematik öğretmenlerinin matematiksel etkinlik kavramına dair algıları. Eğitim ve Bilim, 37(166), 101-115.
  • Bozkurt, A. (2018). Ortaokul 6. Sınıf matematik ders kitabındaki etkinliklerin amaç, öğrenci çalışma biçimi ve uygulanabilirlik yönleriyle değerlendirilmesi. Elektronik Sosyal Bilimler Dergisi, 17(66), 535-548.
  • Brown, G. T., &Harris, L. R. (2009). The complexity of teachers’ conceptions of assessment: Tensions between the needs of schools and students. Assessment in Education: Principles, Policy & Practice, 16(3), 365-381.
  • Creswell, J. W. (2007). Qualitative inquiry & research design: Choosing among five approaches (2nd ed.). London: Sage Publications.
  • Daniels, H. (2001). Vygotsky ve pedagoji. Routledge.
  • Doyle, W. (1983). Academic work. Review of Educational Research, 53, 159-199.
  • Doyle, W. (1988). Work in matehematics classes: The context of students‟ thinking during instruction. Educational Psychologist, 23(2), 167-180.
  • Doyle, W. And Carter, K. (1984). Academic tasks in classrooms. Curriculum Inquiry. 14(2), 129-149.
  • Drijvers, P.,&Trouche, L. (2008). Fromartifactstoinstruments: A theoretical frame work behind the orchestra metaphor. In G. W. Blume& M. K. Heid (Eds.), Research on technologyandtheteachingandlearning of mathematics: Vol. 2. Casesandperspectives(pp. 363-392). Charlotte, NC: Information Age.
  • Gürbüz, R. ve Toprak, Z. (2014). Aritmetikten cebire geçişi sağlayacak etkinliklerin tasarlanması, uygulanması ve değerlendirilmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi (NEF-EFMED), 8(1), 178-203.
  • Güzel, M. (2020). Matematiksel Öğrenme Etkinliklerinin Tasarım Ve Uygulama Niteliğinin Değerlendirilmesi İçin Bir Model Önerisi (Doktora Tezi, Gaziantep Üniversitesi, Gaziantep).
  • Haggarty, L., & Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French and German classrooms: Who gets an opportunity to learn what?. British educational research journal, 28(4), 567-590.
  • Hardman, J. (2019). Towards a pedagogical model of teaching with ICTs for mathematics attainment in primary school: A review of studies 2008–2018. Heliyon, 5(5), e01726.
  • Henningsen, M. And Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 28(5), 524-549.
  • Horoks, J. and Robert, A. (2007). Task designed to highlight task-activity relationships. Journal of Mathematics Teacher Education, 10, 279-287.
  • Jones, K. And Pepin, B. (2016). Research on mathematics teachers as partners in task design. Journal of Mathematics Teacher Education, 19(2), 105-121.
  • Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. sage.
  • Lozano, M. D. (2017). Investigating task design, classroom culture and mathematics learning: an enactivist approach. ZDM, 49(6), 895-907.
  • Margolinas, C. (2013, July). Task design in mathematics education. Proceedings of ICMI study 22. In ICMI Study 22.
  • Merriam, S. B. (2015). Qualitative research: Designing, implementing, and publishing a study. In Handbook of research on scholarly publishing and research methods (pp. 125-140). IGI Global.
  • Merriam, S. B., & Bierema, L. L. (2013). Adult learning: Linking theory and practice. John Wiley & Sons.
  • Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers college record, 108(6), 1017-1054.
  • Özgen, K. (2017). Matematiksel öğrenme etkinliği türlerine yönelik kuramsal bir çalışma: fonksiyon kavramı örneklemesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17(3), 1437-1464.
  • Özmantar, M. F. ve Bingölbali, E. (2009). Etkinlik tasarım ve temel tasarım prensipleri. E. Bingölbali ve M. F. Özmantar, (Ed.). İlköğretimde Karşılaşılan Matematiksel Zorluklar ve Çözüm Önerileri. Ankara: Pegem Akademi.
  • Özmantar, M. F. ve Bingölbali, E. (2010). Etkinlik tasarımı ve temel tasarım prensipleri. E. Bingölbali ve M. F. Özmantar (Ed.), İlköğretimde karşılaşılan matematiksel zorluklar ve çözüm önerileri (2. Baskı) içinde (s. 313-348). Ankara: Pegem Akdemi.
  • Özmantar, M. F., Bozkurt, A., Demir, S., Bingölbali, E. Ve Açıl, E. (2010). Sınıf öğretmenlerinin etkinlik kavramına ilişkin algıları. Selçuk Üniversitesi Ahmet Keleşoğlu Eğitim Fakültesi Dergisi 30, 379-398.
  • Powell, A. B., Borge, I. C., Fioriti, G. I., Kondratieva, M., Koublanova, E., & Sukthankar, N. (2009). Challenging tasks and mathematics learning. In Challenging mathematics in and beyond the classroom (pp. 133-170). Springer, Boston, MA
  • Smith, M. S. And Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3(5), 344-350.
  • Sullivan, P., Clarke, D. and Clarke, B. (2013). Teaching with tasks for effective mathematics learning. New York: Springer Science+Business Media.
  • Sullivan, P., Clarke, D., & Clarke, B. (2012). Teaching with tasks for effective mathematics learning. Berlin: Springer.
  • Suzuki, K. and Harnisch, D. L. (1995, April). Measuring cognitive complexity: an analysis of performance-based assessment ın mathematics. Paper presented at the 1995 Annual Meeting of the American Educational Research Association, San Francisco, CA.
  • Swan, M. (2008). Designing multiple representation learning experience in secondary algebra. Journal of International Society for Design and Development in Education, 1(1), 1-17.
  • Tabach, M. (2011). A mathematics teacher’s practice in a technological environment: A case study analysis using two complementary theories. Technology, Knowledge and Learning, 16(3), 247-265.
  • Törnroos, J. (2005). Mathematics textbooks, opportunity to learn and student achievement. Studies in educational evaluation, 31(4), 315-327.
  • Vaismoradi, M., Turunen, H., & Bondas, T. (2013). Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. Nursing & health sciences, 15(3), 398-405.
  • Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2016). Elementary and middle school mathematics. London: Pearson Education UK.
  • Wertsch, J.V. (1998) Mind as Action, Oxford: Oxford University Press.
  • Yeşildere İmre S. Ortaokul Matematik Öğretim Programları, Özmantar, Mehmet Fatih Akkoç, Hatice Kuşdemir-Kayıran Özyurt Melike, Editör, Pegem Akademi, Ankara, ss.331-347, 2018
  • Yin, R. K. (2003). Designing case studies. Qualitative research methods, 5(14), 359-386.
  • Yin, R. K. (2014). Getting started: How to know whether and when to use the case study as a research method. Case study research: design and methods, 5, 2-25.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Alan Eğitimleri
Bölüm Makaleler
Yazarlar

Nuh Özbey 0000-0002-4542-2958

Mehmet Fatih Özmantar 0000-0002-7842-1337

Erken Görünüm Tarihi 30 Nisan 2023
Yayımlanma Tarihi 30 Nisan 2023
Gönderilme Tarihi 17 Ağustos 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 1

Kaynak Göster

APA Özbey, N., & Özmantar, M. F. (2023). Material Features That Determine the Activity Preferences of Mathematics Teachers. E-Kafkas Journal of Educational Research, 10(1), 18-36. https://doi.org/10.30900/kafkasegt.1163539

19190   23681     19386        19387