BibTex RIS Kaynak Göster

Yedinci Sınıf Öğrencilerinin İspat Becerileri ve Tercihlerinin İncelenmesi

Yıl 2016, Cilt: 17 Sayı: 3, 559 - 579, 01.08.2016

Öz

Bu araştırmanın amacı ispat becerisini geliştirmek için uygulanmış olan, 13 haftalık ispat öğretiminin 7. sınıf öğrencilerinin ispat becerileri ve ispata yönelik tercihlerinde ne yönde değişiklikler meydana getireceğini incelemektir. Araştırma eylem araştırması olarak kurgulanmış ve iki ayrı ortaokulda, toplam 48 öğrenci ile gerçekleştirilmiştir. Araştırmada üç adet veri toplama aracı kullanılmıştır, bunlar birer adet Hazır Bulunuşluk ve İspat Testi ile yarı yapılandırılmış derinlemesine görüşme formudur. Veri analizinde nicel yöntem ve nitel yöntem bir arada kullanılmıştır. Gerçekleştirilen uygulamanın ardından öğrencilerin ispat becerisinde gelişim gözlenmiştir. Öğrencilerin ispat yapacakları önermelere ilişkin tercihlerinde ise kullanılacak ispat yönteminden ziyade, ispatı yapılacak önermenin öğrenciler için anlaşılır oluşunun etkili olduğu gözlenmiştir.

Kaynakça

  • Arslan, Ç. (2007). İlköğretim Öğrencilerinde Muhakeme Etme ve İspatlama Düşüncesinin Gelişimi, Yayınlanmamış Doktora Tezi, Uludağ Üniversitesi, Sosyal Bilimler Enstitüsü, Bursa.
  • Albayrak Bahtiyari, Ö. (2010). 8. Sınıf Matematik Öğretiminde İspat Ve Muhakeme Kavramlarının Ve Önemlerinin Farkındalığı, Yayınlanmamış Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
  • Aylar, E. (2004). 7. Sınıf Öğrencilerinin ispata Yönelik Becerilerinin İrdlenmesi, Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 47 (1), 351-376.
  • Balacheff, N. (1988). Aspects of Proof in Pupils' Practice of School Mathematics, in D. Pimm, Mathematics, Teaccahers and Children, London: Hodder & Stoughton.
  • Balcı, A. (2005). Sosyal Bilimlerde Araştırma, Ankara: Pegem Yayıncılık.
  • Ball, D.L., Hoyles, C., Jahnke, H.N. & Movshovitz-Hadar, N. (2002). The Teaching of Proof, Proceedings of the International Congress of Mathematicians (pp. 907– 920), L.I.Tatsien (Eds.), Vol. III, Beijing: Higher Education Press
  • Cooper, J., Walkington, C., Williams, C., Akinsiku, O., Kalish, C., Ellis, A., et. al. (2011). Adolescent Reasoning İn Mathematics: Exploring Middle School Students’ Strategic Approaches To Empirical-Based Justifications. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society. Boston, MA.
  • Cyr, S. (2011). Development Of Beginning Skills İn Proving And Proof Writing By Elementary School Students, Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education, University of Rzeszów, Poland.
  • Çalışkan, Ç. (2012). 8. Sınıf Öğrencilerinin Matematik Başarılarıyla İspat Yapabilme Seviyelerinin İlişkilendirilmesi, Yayınlanmamış Yükseklisans Tezi, Uludağ Üniversitesi Eğitim Bilimleri Enstitüsü, Bursa.
  • Demir, F. (2011). Bir Dinamik Geometri Yazılımının İlköğretim Öğrencilerinin Geometride İspat Becerilerine Etkisi, Yayınlanmamış Yüksek Lisans Tezi, Erzincan Üniversitesi Fen Bilimleri Enstitüsü, Erzincan.
  • Gossett, E. (2003). Discrete Mathematics With Proof, USA: Pearson Education, Inc.
  • Hanna, G. (1995). Challanges to the İmportance of Proof, For he Learning of Mathematics, 15(3), 42-49.
  • Karaçay, T. (2009). Soyut Matematiğe Giriş, Ankara: Başkent Üniversitesi Yayınları.
  • Knuth, E. J. (2002).Teachers conceptions of proof in the context of secondary school mathematics, Journal of Mathematics Teachers Education, 5, 61 – 88.
  • Knuth, E. J., Chopin, J. M. & Bieda, K. N. (2012). Middle School Students' Production of Mathematical Justification, Teaching and Learning Proof Across the Grades A K16 Perspective, Stylianou, D. A.; Blanton, M. L.; Knuth, E. J. (Eds.), London - New York: Routledge.
  • Lannin, J. K. (2005). Generalization and Justification: The Challenge of Introducing Algebraic Reasoning Through Patterning Activities, Mathematical Thinking and Learning, 7:3, 231-258.
  • Maher, C. A. & Martino, A. M. (1996). The Development of the Idea of Mathematical Proof: A 5-Year Case Study, Journal for Research in Mathematics Education, 27 (2), 194-214.
  • M.E.B. (2013a). Ortaokul Matematik Dersi (5, 6, 7 ve 8. Sınıflar) Programı, Ankara: Milli Eğitim Basımevi.
  • M.E.B. (2013b). Orta Öğretim Matematik (9.10.11 ve 12. Sınıflar) Dersi Öğretim Programı, Ankara: Milli Eğitim Basımevi.
  • NCTM (National Council of Teachers of Mathematics), (2000). Principles And Standards For School Mathematics, Reston, Va: NCTM.
  • Sarı, M., Altun, A. ve Aşkar, P. (2007). Üniversite Öğrencilerinin Analiz Dersi Kapsamında Matematiksel Kanıtlama Süreçleri: Örnek Olay Çalışması, Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 40 (2), 295-319.
  • Schoenfeld, A. (1994). Reflections on Doing and Teaching Mathematics. Schoenfeld, A. (Eds.), Mathematical Thinking and Problem Solving (pp.53-70), Hillsdale, NJ: Erlbaum.
  • Stylianides, A. J. (2007a). Proof and Proving in School Mathematics, Journal for Research in Mathematics Education, 38 (3), 289-321.
  • Stylianides, A. J. (2007b). The Notion Of Proof İn The Context Of Elementary School Mathematics. Educational Studies in Mathematics, 65, 1–20.
  • Tall, D. & Mejia-Ramos, J. P. (2006). The Long-Term Cognitive Development of Different Types of Reasoning and Proof, presented at the Conference on Explanation and Proof in Mathematics: Philosophical and Educational Perspectives, Essen, Germany.
  • Yıldırım, C. (1996). Matematiksel Düşünme (2. Baskı). İstanbul: Remzi Kitabevi.
  • Zaimoğlu, Ş. (2012), 8. sınıf öğrencilerinin geometrik ispat süreci ve eğilimleri, Yayınlanmamış Yüksek Lisans Tezi, Kastamonu Üniversitesi Fen Bilimleri Enstitüsü, Kastamonu.

An Analysis of Seventh-Grade Students’ Proof Skills and Preferences

Yıl 2016, Cilt: 17 Sayı: 3, 559 - 579, 01.08.2016

Öz

This research explores how seventh graders’ ability to do proofs and their preferences on proving have changed as a result of a treatment aimed at developing formal approach to proofs, spread to 13-weeks. The research was designed as action research and was conducted with 48 students from two different secondary schools. Three data collecting tools were used in the research, which are Students’ Readiness Quiz, Proof Quiz, and semi-structured interview form. The research utilized both qualitative and quantitative data. After the interventions, an improvement on students’ ability to do proofs was observed. In addition, in the preference for proving, intelligibility of proposition has been observed to be effective rather than proof methods

Kaynakça

  • Arslan, Ç. (2007). İlköğretim Öğrencilerinde Muhakeme Etme ve İspatlama Düşüncesinin Gelişimi, Yayınlanmamış Doktora Tezi, Uludağ Üniversitesi, Sosyal Bilimler Enstitüsü, Bursa.
  • Albayrak Bahtiyari, Ö. (2010). 8. Sınıf Matematik Öğretiminde İspat Ve Muhakeme Kavramlarının Ve Önemlerinin Farkındalığı, Yayınlanmamış Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
  • Aylar, E. (2004). 7. Sınıf Öğrencilerinin ispata Yönelik Becerilerinin İrdlenmesi, Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 47 (1), 351-376.
  • Balacheff, N. (1988). Aspects of Proof in Pupils' Practice of School Mathematics, in D. Pimm, Mathematics, Teaccahers and Children, London: Hodder & Stoughton.
  • Balcı, A. (2005). Sosyal Bilimlerde Araştırma, Ankara: Pegem Yayıncılık.
  • Ball, D.L., Hoyles, C., Jahnke, H.N. & Movshovitz-Hadar, N. (2002). The Teaching of Proof, Proceedings of the International Congress of Mathematicians (pp. 907– 920), L.I.Tatsien (Eds.), Vol. III, Beijing: Higher Education Press
  • Cooper, J., Walkington, C., Williams, C., Akinsiku, O., Kalish, C., Ellis, A., et. al. (2011). Adolescent Reasoning İn Mathematics: Exploring Middle School Students’ Strategic Approaches To Empirical-Based Justifications. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society. Boston, MA.
  • Cyr, S. (2011). Development Of Beginning Skills İn Proving And Proof Writing By Elementary School Students, Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education, University of Rzeszów, Poland.
  • Çalışkan, Ç. (2012). 8. Sınıf Öğrencilerinin Matematik Başarılarıyla İspat Yapabilme Seviyelerinin İlişkilendirilmesi, Yayınlanmamış Yükseklisans Tezi, Uludağ Üniversitesi Eğitim Bilimleri Enstitüsü, Bursa.
  • Demir, F. (2011). Bir Dinamik Geometri Yazılımının İlköğretim Öğrencilerinin Geometride İspat Becerilerine Etkisi, Yayınlanmamış Yüksek Lisans Tezi, Erzincan Üniversitesi Fen Bilimleri Enstitüsü, Erzincan.
  • Gossett, E. (2003). Discrete Mathematics With Proof, USA: Pearson Education, Inc.
  • Hanna, G. (1995). Challanges to the İmportance of Proof, For he Learning of Mathematics, 15(3), 42-49.
  • Karaçay, T. (2009). Soyut Matematiğe Giriş, Ankara: Başkent Üniversitesi Yayınları.
  • Knuth, E. J. (2002).Teachers conceptions of proof in the context of secondary school mathematics, Journal of Mathematics Teachers Education, 5, 61 – 88.
  • Knuth, E. J., Chopin, J. M. & Bieda, K. N. (2012). Middle School Students' Production of Mathematical Justification, Teaching and Learning Proof Across the Grades A K16 Perspective, Stylianou, D. A.; Blanton, M. L.; Knuth, E. J. (Eds.), London - New York: Routledge.
  • Lannin, J. K. (2005). Generalization and Justification: The Challenge of Introducing Algebraic Reasoning Through Patterning Activities, Mathematical Thinking and Learning, 7:3, 231-258.
  • Maher, C. A. & Martino, A. M. (1996). The Development of the Idea of Mathematical Proof: A 5-Year Case Study, Journal for Research in Mathematics Education, 27 (2), 194-214.
  • M.E.B. (2013a). Ortaokul Matematik Dersi (5, 6, 7 ve 8. Sınıflar) Programı, Ankara: Milli Eğitim Basımevi.
  • M.E.B. (2013b). Orta Öğretim Matematik (9.10.11 ve 12. Sınıflar) Dersi Öğretim Programı, Ankara: Milli Eğitim Basımevi.
  • NCTM (National Council of Teachers of Mathematics), (2000). Principles And Standards For School Mathematics, Reston, Va: NCTM.
  • Sarı, M., Altun, A. ve Aşkar, P. (2007). Üniversite Öğrencilerinin Analiz Dersi Kapsamında Matematiksel Kanıtlama Süreçleri: Örnek Olay Çalışması, Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 40 (2), 295-319.
  • Schoenfeld, A. (1994). Reflections on Doing and Teaching Mathematics. Schoenfeld, A. (Eds.), Mathematical Thinking and Problem Solving (pp.53-70), Hillsdale, NJ: Erlbaum.
  • Stylianides, A. J. (2007a). Proof and Proving in School Mathematics, Journal for Research in Mathematics Education, 38 (3), 289-321.
  • Stylianides, A. J. (2007b). The Notion Of Proof İn The Context Of Elementary School Mathematics. Educational Studies in Mathematics, 65, 1–20.
  • Tall, D. & Mejia-Ramos, J. P. (2006). The Long-Term Cognitive Development of Different Types of Reasoning and Proof, presented at the Conference on Explanation and Proof in Mathematics: Philosophical and Educational Perspectives, Essen, Germany.
  • Yıldırım, C. (1996). Matematiksel Düşünme (2. Baskı). İstanbul: Remzi Kitabevi.
  • Zaimoğlu, Ş. (2012), 8. sınıf öğrencilerinin geometrik ispat süreci ve eğilimleri, Yayınlanmamış Yüksek Lisans Tezi, Kastamonu Üniversitesi Fen Bilimleri Enstitüsü, Kastamonu.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Ebru Aylar

Yeter Şahiner Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 17 Sayı: 3

Kaynak Göster

APA Aylar, E., & Şahiner, Y. (2016). Yedinci Sınıf Öğrencilerinin İspat Becerileri ve Tercihlerinin İncelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 17(3), 559-579.

2562219122   19121   19116   19117     19118       19119       19120     19124