Derleme
BibTex RIS Kaynak Göster

SÜT VE SÜT ÜRÜNLERİNDEN ELDE EDİLEN PEPTİTLERİN PATOJEN MİKROORGANİZMALAR ÜZERİNE ANTİMİKROBİYAL ETKİSİ

Yıl 2021, Cilt: 7 Sayı: 2, 305 - 322, 31.12.2021
https://doi.org/10.34186/klujes.931840

Öz

Gıdalarda bulunan proteinlerin, enzimatik hidroliz veya fermentasyon sonucu parçalanması ile ortaya çıkan biyoaktif peptitler sağlık açısından yararlı birçok aktif bileşikleri içerir. Bu bileşikler antimikrobiyal, antioksidan, bağırsak sistemini düzenleyici ve antihipertansif gibi farklı aktivitelere sahip oldukları yapılan çalışmalarla gösterilmiştir. Ayrıca elde edilen, biyoaktif peptitlerin gıdalarda kullanılabilecek sentetik ve doğal antimikrobiyal maddelere karşı önemli bir alternatif olabileceği belirtilmiştir. Bu derlemede, süt ve süt ürünlerinden elde edilen peptitlerin antimikrobiyal etki mekanizması, aminoasit profili ve mikroorganizmalar üzerine etkisi tartışılmıştır.

Kaynakça

  • Korhonen, H., Milk-derived bioactive peptides: From science to applications. Journal of functional foods 1(2), 177-187, 2009.
  • McClean, S., Beggs, L. B., Welch, R. W., Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues, Food chemistry 146, 443-447, 2014.
  • Ciumac, D., Gong, H., Hu, X., Lu, J. R., Membrane targeting cationic antimicrobial peptides, Journal of colloid and interface science 537, 163-185, 2019.
  • Hancock, R. E., Sahl, H. G., Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nature biotechnology 24(12), 1551, 2006.
  • Brogden, K. A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews microbiology 3(3), 238, 2005.
  • Malanovic, N., Lohner, K., Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides, Biochimica et Biophysica Acta (BBA)-Biomembranes 1858(5), 936-946, 2016.
  • Nguyen, L. T., Haney, E. F., Vogel, H. J., The expanding scope of antimicrobial peptide structures and their modes of action, Trends in biotechnology 29(9), 464-472, 2011.
  • Huang, H. W, Action of antimicrobial peptides: two-state model, Biochemistry 39(29), 8347-8352., 2000.
  • Teixeira, V., Feio, M. J., Bastos, M., Role of lipids in the interaction of antimicrobial peptides with membranes, Progress in lipid research 51(2), 149-177, 2012.
  • Mahalka, A. K., Kinnunen, P. K., Binding of amphipathic α-helical antimicrobial peptides to lipid membranes: lessons from temporins B and L. Biochimica et Biophysica Acta (BBA)-Biomembranes 1788(8), 1600-1609, 2009.
  • Mohanty, D. P., Tripathy, P., Mohapatra, S., Samantaray, D. P., Bioactive potential assessment of antibacterial peptide produced by Lactobacillus isolated from milk and milk products, International Journal of Current Microbiology and Applied Sciences 3, 72-80, 2014.
  • Théolier, J., Hammami, R., Labelle, P., Fliss, I., Jean, J., Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate, Journal of Functional Foods 5(2), 706-714, 2013.
  • McCann, K. B., Shiell, B. J., Michalski, W. P., Lee, A., Wan, J., Roginski, H., Coventry, M. J., Isolation and characterisation of antibacterial peptides derived from the f (164–207) region of bovine αS2-casein, International Dairy Journal 15(2),133-143, 2005.
  • McCann, K. B., Shiell, B. J., Michalski, W. P., Lee, A., Wan, J., Roginski, H., Coventry, M. J., Isolation and characterisation of a novel antibacterial peptide from bovine αS1-casein, International Dairy Journal 16(4), 316-323, 2006.
  • Pellegrini, A., Dettling, C., Thomas, U., Hunziker, P., Isolation and characterization of four bactericidal domains in the bovine β-lactoglobulin, Biochimica et Biophysica Acta (BBA)-General Subjects 1526(2), 131-140, 2001.
  • Elbarbary, H. A., Abdou, A. M., Nakamura, Y., Park, E. Y., Mohamed, H. A., Sato, K., Identification of novel antibacterial peptides isolated from a commercially available casein hydrolysate by autofocusing technique, Biofactors 38(4), 309-315, 2012.
  • López-Expósito, I., Gómez-Ruiz, J. Á., Amigo, L., Recio, I., Identification of antibacterial peptides from ovine αs2-casein, International Dairy Journal 16(9), 1072-1080, 2006.
  • Demers-Mathieu, V., Gauthier, S. F., Britten, M., Fliss, I., Robitaille, G., Jean, J., Antibacterial activity of peptides extracted from tryptic hydrolyzate of whey protein by nanofiltration, International Dairy Journal 28(2), 94-101, 2013.
  • Almaas, H., Eriksen, E., Sekse, C., Comi, I., Flengsrud, R., Holm, H., Jensen, E., Jacobsen, M., Langsrud, T., Vegarud, G. E., Antibacterial peptides derived from caprine whey proteins, by digestion with human gastrointestinal juice, British journal of nutrition 106(6), 896-905, 2011.
  • Bougherra, F., Dilmi-Bouras, A., Balti, R., Przybylski, R., Adoui, F., Elhameur, H., Chevalier, M., Flahaut, C., Dhulster, P., Naima, N., Antibacterial activity of new peptide from bovine casein hydrolyzed by a serine metalloprotease of Lactococcus lactis subsp lactis BR16, Journal of Functional Foods 32, 112-122, 2017.
  • Sedaghati, M., Ezzatpanah, H., Boojar, M. M. A., Ebrahimi, M. T., Kobarfard, F., Isolation and identification of some antibacterial peptides in the plasmin-digest of β-casein, LWT-Food Science and Technology 68, 217-225, 2016.
  • Sun, Y., Zhou, Y., Liu, X., Zhang, F., Yan, L., Chen, L., Wang, X., Ruan, H., Ji, C., Cui, X., Wang, J., Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk, Biochemical and biophysical research communications 484(1), 132-137, 2017.
  • Lahov, E., Regelson, W., Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides, Food and Chemical Toxicology 34(1), 131-145, 1996.
  • Farnaud, S., Evans, R. W., Lactoferrin—a multifunctional protein with antimicrobial properties, Molecular immunology 40(7), 395-405, 2003.
  • Pan, Y., Rowney, M., Guo, P., Hobman, P., Biological properties of lactoferrin: an overview, Australian Journal of Dairy Technology 62(1), 31, 2007.
  • Van der Kraan, M. I., Groenink, J., Nazmi, K., Veerman, E. C., Bolscher, J. G., Amerongen, A. V. N., Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin, Peptides 25(2), 177-183, 2004.
  • Rodríguez-Franco, D. A., Vázquez-Moreno, L., Ramos-Clamont Montfort, G., Antimicrobial mechanisms and potential clinical applications of lactoferrin, Revista latinoamericana de microbiologia 47(3-4), 102-111, 2005.
  • Ward, P. P., Paz, E., Conneely, O. M., Lactoferrin, Cellular and Molecular Life Sciences 62(22), 2540, 2005.
  • Biziulevičius, G. A., Kislukhina, O. V., Kazlauskaitė, J., Žukaitė, V., Food-protein enzymatic hydrolysates possess both antimicrobial and immunostimulatory activities: a ‘cause and effect’theory of bifunctionality, FEMS Immunology & Medical Microbiology 46(1), 131-138, 2006.
  • Halavach, T. M., Dudchik, N. V., Tarun, E. I., Zhygankov, V. G., Kurchenko, V. P., Romanovich, R. V., ... & Asafov, V. A., Biologically active properties of hydrolysed and fermented milk proteins, Journal of Microbiology, Biotechnology and Food Sciences, 9(4), 714-720, 2020.
  • Esmaeilpour, M., Ehsani, M. R., Aminlari, M., Shekarforoush, S., Hoseini, E., Antimicrobial activity of peptides derived from enzymatic hydrolysis of goat milk caseins, Comparative Clinical Pathology 25(3), 599-605, 2016.
  • Osman, A., Goda, H. A., Abdel-Hamid, M., Badran, S. M., Otte, J., Antibacterial peptides generated by Alcalase hydrolysis of goat whey, LWT-Food science and technology 65, 480-486, 2016.
  • Arruda, M. S., Silva, F. O., Egito, A. S., Silva, T. M. S., Lima-Filho, J. L., Porto, A. L. F., Moreira, K. A., New peptides obtained by hydrolysis of caseins from bovine milk by protease extracted from the latex Jacaratia corumbensis, LWT-Food Science and Technology 49(1), 73-79, 2012.
  • Hayes, M., Ross, R. P., Fitzgerald, G. F., Hill, C., Stanton, C., Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026, Applied and Environmental Microbiology 72(3), 2260-2264, 2006.
  • Hidalgo, M. E., Côrrea, A. P. F., Canales, M. M., Daroit, D. J., Brandelli, A., Risso, P., Biological and physicochemical properties of bovine sodium caseinate hydrolysates obtained by a bacterial protease preparation, Food Hydrocolloids 43, 510-520, 2015.
  • Liu, Y., Ma, Y., Hou, C., & Song, S., Inhibitory effect of milk-derived peptide αS2-casein151-181 against spore-forming bacteria, International Dairy Journal, 104, 104651, 2020.
  • Pritchard, S. R., Phillips, M., Kailasapathy, K., Identification of bioactive peptides in commercial Cheddar cheese, Food research international 43(5), 1545-1548, 2010.
  • Rizzello, C. G., Losito, I., Gobbetti, M., Carbonara, T., De Bari, M. D., Zambonin, P. G., Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties, Journal of Dairy Science 88(7), 2348-2360, 2005.
  • Fialho, T. L., Carrijo, L. C., Júnior, M. J. M., Baracat-Pereira, M. C., Piccoli, R. H., de Abreu, L. R., Extraction and identification of antimicrobial peptides from the Canastra artisanal minas cheese, Food research international 107, 406-413, 2018.
  • Demers-Mathieu, V., Gauthier, S. F., Britten, M., Fliss, I., Robitaille, G., Jean, J., Inhibition of Listeria monocytogenes growth in Cheddar cheese by an anionic peptides-enriched extract from whey proteins, International dairy journal 32(1), 6-12, 2013.
  • da Silva, D. D., de Lima, M. D. S. F., da Silva, M. F., da Silva, G. R., Campos, J. F., Albuquerque, W. W., Cavalcanki, M. T. H., Porto, A. L. F., Bioactive water-soluble peptides from fresh buffalo cheese may be used as product markers, LWT 108, 97-105, 2019.
  • Banihashemi, S. A., Nikoo, M., Ghasempour, Z., & Ehsani, A., Bioactive peptides fractions from traditional Iranian Koopeh cheese; lactic fermentation products, Biocatalysis and Agricultural Biotechnology, 29, 101798, 2020.
  • Zanutto-Elgui, M. R., Vieira, J. C. S., do Prado, D. Z., Buzalaf, M. A. R., de Magalhães Padilha, P., de Oliveira, D. E., Fleuri, L. F., Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases, Food chemistry, 278, 823-831, 2019.
  • Miao, J., Guo, H., Ou, Y., Liu, G., Fang, X., Liao, Z., Ke, C., Chen, Y., Zhao, L., Cao, Y., Purification and characterization of bacteriocin F1, a novel bacteriocin produced by Lactobacillus paracasei subsp. tolerans FX-6 from Tibetan kefir, a traditional fermented milk from Tibet, China, Food Control 42, 48-53, 2014.
  • Miao, J., Liu, G., Ke, C., Fan, W., Li, C., Chen, Y., Dixon, W., Song, M., Cao, Y., Xiao, H., Inhibitory effects of a novel antimicrobial peptide from kefir against Escherichia coli, Food Control 65, 63-72, 2016.
  • De Lima, M. D. S. F., da Silva, R. A., da Silva, M. F., da Silva, P. A. B., Costa, R. M. P. B., Teixeira, J. A. C., ... & Cavalcanti, M. T. H., Brazilian kefir-fermented sheep’s milk, a source of antimicrobial and antioxidant peptides, Probiotics and antimicrobial proteins, 10(3), 446-455, 2018.
  • Semen, Z., Altıntaş, A, Deve Sütünün Besinsel Biyololik ve Terapötik Etkileri, Türk Veteriner Hekimleri Birliği Dergisi, 15, 85-102, 2015.
  • Muhialdin, B. J., Algboory, H. L., Identification of low molecular weight antimicrobial peptides from Iraqi camel milk fermented with Lactobacillus plantarum, PharmaNutrition 6(2), 69-73, 2018.
  • Almi-Sebbane, D., Adt, I., Degraeve, P., Jardin, J., Bettler, E., Terreux, R., Oulahal, N., Mati, A., Casesidin-like anti-bacterial peptides in peptic hydrolysate of camel milk β-casein, International Dairy Journal 86, 49-56, 2018.
  • Kumar, D., Chatli, M. K., Singh, R., Mehta, N., Kumar, P,. Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions, Small Ruminant Research 139, 20-25, 2016.
  • Jrad, Z., El Hatmi, H., Adt, I., Girardet, J. M., Cakir-Kiefer, C., Jardin, J., Degreave, P., Khorchani, T., Oulahal, N., Effect of digestive enzymes on antimicrobial, radical scavenging and angiotensin I-c onverting enzyme inhibitory activities of camel colostrum and milk proteins, Dairy Science & Technology 94(3), 205-224, 2014.
  • Salami, M., Moosavi-Movahedi, A. A., Ehsani, M. R., Yousefi, R., Haertle, T., Chobert, J. M., Ravazi, S. H., Henrich, R., Balalaie, S., Ebadi, S. A., Pourtakdoost, S., Niasari-Naslaji, A., Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis, Journal of Agricultural and Food Chemistry 58(6), 3297-3302, 2010.
  • Hakansson, A. P., Protective effects of human milk antimicrobial peptides against bacterial infection, Jornal de pediatria 91(1), 04-05,2015.
  • Mohanty, D., Jena, R., Choudhury, P. K., Pattnaik, R., Mohapatra, S., Saini, M. R., Milk derived antimicrobial bioactive peptides: a review, International Journal of Food Properties 19(4), 837-846, 2016.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Sayı
Yazarlar

Sinan Akbal 0000-0001-5928-1917

Zübeyde Öner 0000-0003-2557-0731

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 7 Sayı: 2

Kaynak Göster

APA Akbal, S., & Öner, Z. (2021). SÜT VE SÜT ÜRÜNLERİNDEN ELDE EDİLEN PEPTİTLERİN PATOJEN MİKROORGANİZMALAR ÜZERİNE ANTİMİKROBİYAL ETKİSİ. Kırklareli Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 7(2), 305-322. https://doi.org/10.34186/klujes.931840