Araştırma Makalesi
BibTex RIS Kaynak Göster

ON A NEW CLASS OF s-TYPE OPERATORS

Yıl 2015, Cilt: 3 Sayı: 1, 1 - 11, 01.04.2015

Öz

In this paper, we introduce a new class of operators by using s-numbers and the sequence space Z(u; v; `p) for 1 < p < 1. We prove that this class is a quasi-Banach operator ideal. Also, we give some properties of the quasi-Banach operator ideal. Lastly, we establish some inclusion relations among the operator ideals formed by di erent s-number sequences.

Kaynakça

  • [1] B. Altay and F. Başar, Generalization of the sequence space `(p) derived by weighted mean, J. Math. Anal. Appl. Vol:330 (2007), 174-185.
  • [2] J. Burgoyne, Denseness of the generalized eigenvectors of a discrete operator in a Banach space, J. Operator Theory Vol:33 (1995), 279-297.
  • [3] Gh. Constantin, Operators of ces 􀀀 p type, Rend. Acc. Naz. Lincei. Vol:52 No.8 (1972), 875{878.
  • [4] W. B. Johnson and J. Lindenstrauss, Handbook of the geometry of banach spaces, Elsevier Science B. V., North-Holand, 2001.
  • [5] E. Kreyszig, Introductory functional analysis with applications, John Wiley Sons. Inc., The United States of America, 1978.
  • [6] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxforf Vol:18 No.2 (1967), 345-355.
  • [7] A. Maji and P. D. Srivastava, On operator ideals using weighted Cesaro sequence space, Egyp. Math. Soc., Vol:22 (2014), 446-452.
  • [8] E. Malkowsky and E. Sava, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comp. Vol:147 (2004), 333-345.
  • [9] A. Pietsch, Einige neue klassen von kompakten linearen Abbildungen, Rev. Math. Pures Appl. Vol:8 (1963), 427-447.
  • [10] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
  • [11] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. Vol:51 (1974), 201-223.
  • [12] A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, New York, 1986.
  • [13] J. S. Shiue, On the Cesaro sequence spaces, Tamkang J. Math. Vol:1 No.1 (1970), 19-25.
Yıl 2015, Cilt: 3 Sayı: 1, 1 - 11, 01.04.2015

Öz

Kaynakça

  • [1] B. Altay and F. Başar, Generalization of the sequence space `(p) derived by weighted mean, J. Math. Anal. Appl. Vol:330 (2007), 174-185.
  • [2] J. Burgoyne, Denseness of the generalized eigenvectors of a discrete operator in a Banach space, J. Operator Theory Vol:33 (1995), 279-297.
  • [3] Gh. Constantin, Operators of ces 􀀀 p type, Rend. Acc. Naz. Lincei. Vol:52 No.8 (1972), 875{878.
  • [4] W. B. Johnson and J. Lindenstrauss, Handbook of the geometry of banach spaces, Elsevier Science B. V., North-Holand, 2001.
  • [5] E. Kreyszig, Introductory functional analysis with applications, John Wiley Sons. Inc., The United States of America, 1978.
  • [6] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxforf Vol:18 No.2 (1967), 345-355.
  • [7] A. Maji and P. D. Srivastava, On operator ideals using weighted Cesaro sequence space, Egyp. Math. Soc., Vol:22 (2014), 446-452.
  • [8] E. Malkowsky and E. Sava, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comp. Vol:147 (2004), 333-345.
  • [9] A. Pietsch, Einige neue klassen von kompakten linearen Abbildungen, Rev. Math. Pures Appl. Vol:8 (1963), 427-447.
  • [10] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
  • [11] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. Vol:51 (1974), 201-223.
  • [12] A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, New York, 1986.
  • [13] J. S. Shiue, On the Cesaro sequence spaces, Tamkang J. Math. Vol:1 No.1 (1970), 19-25.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Emrah Evren Kara Bu kişi benim

Merve İlkhan

Yayımlanma Tarihi 1 Nisan 2015
Gönderilme Tarihi 10 Haziran 2014
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 1

Kaynak Göster

APA Kara, E. E., & İlkhan, M. (2015). ON A NEW CLASS OF s-TYPE OPERATORS. Konuralp Journal of Mathematics, 3(1), 1-11.
AMA Kara EE, İlkhan M. ON A NEW CLASS OF s-TYPE OPERATORS. Konuralp J. Math. Nisan 2015;3(1):1-11.
Chicago Kara, Emrah Evren, ve Merve İlkhan. “ON A NEW CLASS OF S-TYPE OPERATORS”. Konuralp Journal of Mathematics 3, sy. 1 (Nisan 2015): 1-11.
EndNote Kara EE, İlkhan M (01 Nisan 2015) ON A NEW CLASS OF s-TYPE OPERATORS. Konuralp Journal of Mathematics 3 1 1–11.
IEEE E. E. Kara ve M. İlkhan, “ON A NEW CLASS OF s-TYPE OPERATORS”, Konuralp J. Math., c. 3, sy. 1, ss. 1–11, 2015.
ISNAD Kara, Emrah Evren - İlkhan, Merve. “ON A NEW CLASS OF S-TYPE OPERATORS”. Konuralp Journal of Mathematics 3/1 (Nisan 2015), 1-11.
JAMA Kara EE, İlkhan M. ON A NEW CLASS OF s-TYPE OPERATORS. Konuralp J. Math. 2015;3:1–11.
MLA Kara, Emrah Evren ve Merve İlkhan. “ON A NEW CLASS OF S-TYPE OPERATORS”. Konuralp Journal of Mathematics, c. 3, sy. 1, 2015, ss. 1-11.
Vancouver Kara EE, İlkhan M. ON A NEW CLASS OF s-TYPE OPERATORS. Konuralp J. Math. 2015;3(1):1-11.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.