Araştırma Makalesi
BibTex RIS Kaynak Göster

SOME CHARACTERIZATIONS OF EULER SPIRALS IN E3

Yıl 2016, Cilt: 4 Sayı: 1, 261 - 274, 01.04.2016

Öz

In this study, some characterizations of Euler spirals in E3 1 have been presented by using their main property that their curvatures are linear. Moreover, discussing some properties of Bertrand curves and helices, the relationship between these special curves in E3 1 have been investigated with di erent theorems and examples. The approach we used in this paper is useful in understanding the role of Euler spirals in E3 1 in di erential geometry.

Kaynakça

  • [1] Harary, G., Tal, A., 3D Euler Spirals for 3D Curve Completion, Symposium on Computational Geometry 2010: 107-108.
  • [2] Harary, G., Tal, A., The Natural 3D Spiral, Computer Graphics Forum, Volume 30(2011), Number 2: 237-246.
  • [3] Kalkan, B., Lopez, R., Spacelike surfaces in Minkowski space satisfying a linear relation between their principal curvatures, Di erential Geometry-Dynamical Systems, Vol.13, 2011, pp. 107-116.
  • [4] K. Ilarslan, E. Nesovic, and M. Petrovic-Torgasev, Some Characterizations of Rectifying Curves in the Minkowski 3-space, Novi Sad J. Math. 33 (2003), no. 2, 23f32g.
  • [5] Lopez, R., Di erential Geometry of Curves and Surfaces in Lorentz-Minkowski Space. [arXiv:0810.3351v1] math.DG, 2008.
  • [6] Saracoglu Celik, S., Yayli, Y., Guler, E., On Generalized Euler Spirals in E3, International Journal of Geometry (Accepted).
  • [7] http://www.cs.iastate.edu/~cs577/handouts/curvature.pdf.
Yıl 2016, Cilt: 4 Sayı: 1, 261 - 274, 01.04.2016

Öz

Kaynakça

  • [1] Harary, G., Tal, A., 3D Euler Spirals for 3D Curve Completion, Symposium on Computational Geometry 2010: 107-108.
  • [2] Harary, G., Tal, A., The Natural 3D Spiral, Computer Graphics Forum, Volume 30(2011), Number 2: 237-246.
  • [3] Kalkan, B., Lopez, R., Spacelike surfaces in Minkowski space satisfying a linear relation between their principal curvatures, Di erential Geometry-Dynamical Systems, Vol.13, 2011, pp. 107-116.
  • [4] K. Ilarslan, E. Nesovic, and M. Petrovic-Torgasev, Some Characterizations of Rectifying Curves in the Minkowski 3-space, Novi Sad J. Math. 33 (2003), no. 2, 23f32g.
  • [5] Lopez, R., Di erential Geometry of Curves and Surfaces in Lorentz-Minkowski Space. [arXiv:0810.3351v1] math.DG, 2008.
  • [6] Saracoglu Celik, S., Yayli, Y., Guler, E., On Generalized Euler Spirals in E3, International Journal of Geometry (Accepted).
  • [7] http://www.cs.iastate.edu/~cs577/handouts/curvature.pdf.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Semra Saracoglu Çelik Bu kişi benim

Yusuf Yaylı

Erhan Güler

Yayımlanma Tarihi 1 Nisan 2016
Gönderilme Tarihi 10 Temmuz 2014
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 1

Kaynak Göster

APA Çelik, S. S., Yaylı, Y., & Güler, E. (2016). SOME CHARACTERIZATIONS OF EULER SPIRALS IN E3. Konuralp Journal of Mathematics, 4(1), 261-274.
AMA Çelik SS, Yaylı Y, Güler E. SOME CHARACTERIZATIONS OF EULER SPIRALS IN E3. Konuralp J. Math. Nisan 2016;4(1):261-274.
Chicago Çelik, Semra Saracoglu, Yusuf Yaylı, ve Erhan Güler. “SOME CHARACTERIZATIONS OF EULER SPIRALS IN E3”. Konuralp Journal of Mathematics 4, sy. 1 (Nisan 2016): 261-74.
EndNote Çelik SS, Yaylı Y, Güler E (01 Nisan 2016) SOME CHARACTERIZATIONS OF EULER SPIRALS IN E3. Konuralp Journal of Mathematics 4 1 261–274.
IEEE S. S. Çelik, Y. Yaylı, ve E. Güler, “SOME CHARACTERIZATIONS OF EULER SPIRALS IN E3”, Konuralp J. Math., c. 4, sy. 1, ss. 261–274, 2016.
ISNAD Çelik, Semra Saracoglu vd. “SOME CHARACTERIZATIONS OF EULER SPIRALS IN E3”. Konuralp Journal of Mathematics 4/1 (Nisan 2016), 261-274.
JAMA Çelik SS, Yaylı Y, Güler E. SOME CHARACTERIZATIONS OF EULER SPIRALS IN E3. Konuralp J. Math. 2016;4:261–274.
MLA Çelik, Semra Saracoglu vd. “SOME CHARACTERIZATIONS OF EULER SPIRALS IN E3”. Konuralp Journal of Mathematics, c. 4, sy. 1, 2016, ss. 261-74.
Vancouver Çelik SS, Yaylı Y, Güler E. SOME CHARACTERIZATIONS OF EULER SPIRALS IN E3. Konuralp J. Math. 2016;4(1):261-74.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.