Araştırma Makalesi
BibTex RIS Kaynak Göster

TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi

Yıl 2016, Cilt: 4 Sayı: 1, 275 - 281, 01.04.2016

Öz

In this paper, we classify translation surfaces in the three dimen- sional simply isotropic space I13 satisfying some algebraic equations in terms of the coordinate functions and the Laplacian operators with respect to the third fundamental form of the surface. We also give explicit forms of these surfaces.

Kaynakça

  • [1] L. J. Alias, A. Ferrandez and P. Lucas, Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying x = Ax + B, Paci c J. Math. 156 (1992), 201{208.
  • [2] M.E.Aydin, Classi cation results on surfaces in the isotropic 3-space, http://arxiv.org/pdf/1601.03190.pdf
  • [3] M.E.Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom, DOI 10.1007/s00022-015-0292-0
  • [4] C.Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces,Rend. Sem. Math. Messina Ser. II 2(16) (1993), 31{42.
  • [5] M.Bekkar, Surfaces of Revolution in the 3-Dimensional Lorentz-Minkowski Space Satisfying xi = ixi;Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 24, 1173 - 1185
  • [6] M.Bekkar, B. Senoussi, Translation surfaces in the 3-dimensional space satisfying III ri = iri; J. Geom. 103 (2012), 367{374
  • [7] S.M.Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), 351{367.
  • [8] S.M.Choi, Y. H.Kim and D.W.Yoon, Some classi cation of surfaces of revolution in Minkowski 3-space, J. Geom. 104 (2013), 85{106
  • [9] B.Y. Chen, A report on submanifold of nite type, Soochow J. Math. 22 (1996),117{337.
  • [10] F. Dillen, J. Pas and L. Vertraelen, On surfaces of nite type in Euclidean 3-space,Kodai Math. J. 13 (1990), 10{21.
  • [11] F. Dillen, J. Pas and L. Vertraelen, On the Gauss map of surfaces of revolution,Bull. Inst. Math. Acad. Sinica 18 (1990), 239{246.
  • [12] O. J. Garay, An extension of Takahashi's theorem, Geom. Dedicata 34 (1990), 105{112.
  • [13] G. Kaimakamis, B. Papantoniou, K. Petoumenos, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying IIIr = Ar, Bull.Greek Math. Soc. 50 (2005), 75-90.
  • [14] M.K.Karacan, D.W.Yonn and B.Bukcu, Translation surfaces in the three dimensional simply isotropic space I13 ;International Journal of Geometric Methods in Modern Physics, accepted.
  • [15] H. Sachs, Isotrope Geometrie des Raumes, Vieweg Verlag, Braunschweig, 1990.
  • [16] B.Senoussi, M. Bekkar, Helicoidal surfaces with J r = Ar in 3-dimensional Euclidean space,Stud. Univ. Babes-Bolyai Math. 60(2015), No. 3, 437-448
  • [17] Z.M. Sipus, Translation Surfaces of constant curvatures in a simply isotropic space,Period Math. Hung. (2014) 68:160{175.
  • [18] K. Strubecker, Di erentialgeometrie des isotropen Raumes III, Flachentheorie, Math. Zeitsch.48 (1942), 369-427.
  • [19] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan,18 (1966), 380{385.
  • [20] D.W.Yoon, Surfaces of Revolution in the three dimensional pseudo-galilean space,Glasnik Matematicki,Vol. 48 (68) (2013), 415 { 428.
  • [21] D.W.Yoon, Some Classi cation of Translation Surfaces in Galilean 3-Space, Int. Journal of Math. Analysis, 6(28) 2012,1355 - 1361.
Yıl 2016, Cilt: 4 Sayı: 1, 275 - 281, 01.04.2016

Öz

Kaynakça

  • [1] L. J. Alias, A. Ferrandez and P. Lucas, Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying x = Ax + B, Paci c J. Math. 156 (1992), 201{208.
  • [2] M.E.Aydin, Classi cation results on surfaces in the isotropic 3-space, http://arxiv.org/pdf/1601.03190.pdf
  • [3] M.E.Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom, DOI 10.1007/s00022-015-0292-0
  • [4] C.Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces,Rend. Sem. Math. Messina Ser. II 2(16) (1993), 31{42.
  • [5] M.Bekkar, Surfaces of Revolution in the 3-Dimensional Lorentz-Minkowski Space Satisfying xi = ixi;Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 24, 1173 - 1185
  • [6] M.Bekkar, B. Senoussi, Translation surfaces in the 3-dimensional space satisfying III ri = iri; J. Geom. 103 (2012), 367{374
  • [7] S.M.Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), 351{367.
  • [8] S.M.Choi, Y. H.Kim and D.W.Yoon, Some classi cation of surfaces of revolution in Minkowski 3-space, J. Geom. 104 (2013), 85{106
  • [9] B.Y. Chen, A report on submanifold of nite type, Soochow J. Math. 22 (1996),117{337.
  • [10] F. Dillen, J. Pas and L. Vertraelen, On surfaces of nite type in Euclidean 3-space,Kodai Math. J. 13 (1990), 10{21.
  • [11] F. Dillen, J. Pas and L. Vertraelen, On the Gauss map of surfaces of revolution,Bull. Inst. Math. Acad. Sinica 18 (1990), 239{246.
  • [12] O. J. Garay, An extension of Takahashi's theorem, Geom. Dedicata 34 (1990), 105{112.
  • [13] G. Kaimakamis, B. Papantoniou, K. Petoumenos, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying IIIr = Ar, Bull.Greek Math. Soc. 50 (2005), 75-90.
  • [14] M.K.Karacan, D.W.Yonn and B.Bukcu, Translation surfaces in the three dimensional simply isotropic space I13 ;International Journal of Geometric Methods in Modern Physics, accepted.
  • [15] H. Sachs, Isotrope Geometrie des Raumes, Vieweg Verlag, Braunschweig, 1990.
  • [16] B.Senoussi, M. Bekkar, Helicoidal surfaces with J r = Ar in 3-dimensional Euclidean space,Stud. Univ. Babes-Bolyai Math. 60(2015), No. 3, 437-448
  • [17] Z.M. Sipus, Translation Surfaces of constant curvatures in a simply isotropic space,Period Math. Hung. (2014) 68:160{175.
  • [18] K. Strubecker, Di erentialgeometrie des isotropen Raumes III, Flachentheorie, Math. Zeitsch.48 (1942), 369-427.
  • [19] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan,18 (1966), 380{385.
  • [20] D.W.Yoon, Surfaces of Revolution in the three dimensional pseudo-galilean space,Glasnik Matematicki,Vol. 48 (68) (2013), 415 { 428.
  • [21] D.W.Yoon, Some Classi cation of Translation Surfaces in Galilean 3-Space, Int. Journal of Math. Analysis, 6(28) 2012,1355 - 1361.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Bahaddin Bukcu

Dae Won Yoon

Murat Kemal Karacan

Yayımlanma Tarihi 1 Nisan 2016
Gönderilme Tarihi 10 Temmuz 2014
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 1

Kaynak Göster

APA Bukcu, B., Yoon, D. W., & Karacan, M. K. (2016). TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi. Konuralp Journal of Mathematics, 4(1), 275-281.
AMA Bukcu B, Yoon DW, Karacan MK. TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi. Konuralp J. Math. Nisan 2016;4(1):275-281.
Chicago Bukcu, Bahaddin, Dae Won Yoon, ve Murat Kemal Karacan. “TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi”. Konuralp Journal of Mathematics 4, sy. 1 (Nisan 2016): 275-81.
EndNote Bukcu B, Yoon DW, Karacan MK (01 Nisan 2016) TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi. Konuralp Journal of Mathematics 4 1 275–281.
IEEE B. Bukcu, D. W. Yoon, ve M. K. Karacan, “TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi”, Konuralp J. Math., c. 4, sy. 1, ss. 275–281, 2016.
ISNAD Bukcu, Bahaddin vd. “TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi”. Konuralp Journal of Mathematics 4/1 (Nisan 2016), 275-281.
JAMA Bukcu B, Yoon DW, Karacan MK. TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi. Konuralp J. Math. 2016;4:275–281.
MLA Bukcu, Bahaddin vd. “TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi”. Konuralp Journal of Mathematics, c. 4, sy. 1, 2016, ss. 275-81.
Vancouver Bukcu B, Yoon DW, Karacan MK. TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi. Konuralp J. Math. 2016;4(1):275-81.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.