Research Article
BibTex RIS Cite

A DIFFERENT VIEWPOINT ABOUT THE WEAK CONVERGENCE VIA IDEALS AND $\Delta ^{m}$ SEQUENCES

Year 2017, Volume: 5 Issue: 1, 113 - 122, 01.04.2017

Abstract

In this study, we use generalized difference sequences $\Delta ^{m}x=(\Delta ^{m}x_{k})=(\Delta ^{m-1}x_{k}-\Delta ^{m-1}x_{k+1})$ to obtain more general results about weak convergence and we investigate the concept of $\Delta ^{m} \mathcal{I-}$weak convergence where $m\in \mathbb{N} $. We also define weak $\Delta^{m}\mathcal{I-}$limit points and weak $ \Delta^{m}\mathcal{I-}$cluster points.

References

  • [1] C. Aydin and F. Basar, Some new difference sequence spaces, Appl. Math.Comput., 157(3) (2004), 677-693.
  • [2] M. Basarir, On the $\Delta$ statistical convergence of sequences, Firat Uni., Jour. of Science and Engineering, 7(2) (1995), 1-6.
  • [3] C .A. Bektas, M. Et and R. Colak, Generalized difference sequence spaces and their dual spaces, J.Math.Anal.Appl. 292 (2004), 423-432.
  • [4] V. K. Bhardwaj and I. Bala, On weak statistical convergence, International Journal of Mathematics and Math. Sci., Vol. 2007, Article ID:38530, doi:10.1155/2007/38530 (2007).9 pages.
  • [5] J. Connor, M. Ganichev and V. Kadets, A characterization of Banach spaces with seperable duals via weak statistical convergence, J. Math. Anal. Appl. 244 (2000).251-261.
  • [6] K. Demirci, $\mathcal{I}$ limit superior and limit inferior, Math. Commun. 6 (2001), 165 172.
  • [7] K. Dems, On I-Cauchy sequence, Real Anal. Exchange 30 (2004/2005), 123 128.
  • [8] E. Dundar, C. Cakan, Rough I-Convergence, Demonstratio Mathematica, 47(3)(2014), 638-651.
  • [9] M. Et, On some difference sequence spaces, Doga-Tr. J.of Mathematics 17 (1993), 18-24.
  • [10] M. Et and R. Colak, On some generalized di erence sequence spaces, Soochow Journal Of Mathematics, 21(4) (1995), 377-386.
  • [11] M. Et and M. Basarir, On some new generalized difference sequence spaces, Periodica Mathematica Hungarica 35 (3) (1997), 169-175.
  • [12] M. Et and F. Nuray, $\Delta^m$ Statistical convergence, Indian J.Pure Appl. Math. 32(6) (2001), 961-969.
  • [13] M. Et. and A. Esi, On Kothe- Toeplitz duals of generalized difference sequence spaces, Malaysian Math. Sci. Soc. 23 (2000), 25-32.
  • [14] H. Fast, Sur la Convergence Statistique, Coll. Math. 2 (1951), 241-244.
  • [15] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
  • [16] J. A. Fridy. and C. Orhan, Lacunary statistical convergence, Pac. J. Math.160 (1993), 43-51.
  • [17] H. Gumus and F. Nuray, $\Delta^m$Ideal Convergence, Selcuk J. Appl. Math.12(2) (2011), 101-110.
  • [18] H. Gumus, Lacunary Weak $\mathcal{I}-$Statistical Convergence, Gen. Math. Notes 28(1) (2015), 50-58.
  • [19] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
  • [20] P. Kostyrko, M. Macaj, T. Salat, T. and M. Sleziak,M., $\mathcal{I}-$convergence and extremal $|mathcal{I}-$limit points, Math. Slovaca 55 (2005), 443-464.
  • [21] P. Kostyrko, T. Salat and W. Wilezynski, $\mathcal{I}-$convergence, Real Anal. Exchange, 26, 2 (2000), 669-686.
  • [22] A. Nabiev, S. Pehlivan, M. Gurdal, On I-Cauchy sequence, Taiwanese J. Math. 11 (2) (2007), 569 576.
  • [23] F. Nuray, Lacunary weak statistical convergence, Math. Bohemica, 136(3) (2011), 259-268.
  • [24] S. Pehlivan and T. Karaev, Some results related with statistical convergence and Berezin symbols, Jour. of Math. analysis and Appl. V 299(2) (2004), 333-340.
  • [25] E. Savas $\Delta^m$-strongly summable sequences spaces in 2-normed spaces de ned by ideal convergence and an Orlicz function, Applied Mathematics and Computation 217(1) (2010), 271-276.
  • [26] E. Savas and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), 826-830.
  • [27] O. Talo, E. Dundar, $\mathcal{I}-$-Limit Superior and $\mathcal{I}-$-Limit Inferior for Sequences of Fuzzy Numbers, Konuralp Journal of Mathematics, 4(2) (2016), 1643 172.
Year 2017, Volume: 5 Issue: 1, 113 - 122, 01.04.2017

Abstract

References

  • [1] C. Aydin and F. Basar, Some new difference sequence spaces, Appl. Math.Comput., 157(3) (2004), 677-693.
  • [2] M. Basarir, On the $\Delta$ statistical convergence of sequences, Firat Uni., Jour. of Science and Engineering, 7(2) (1995), 1-6.
  • [3] C .A. Bektas, M. Et and R. Colak, Generalized difference sequence spaces and their dual spaces, J.Math.Anal.Appl. 292 (2004), 423-432.
  • [4] V. K. Bhardwaj and I. Bala, On weak statistical convergence, International Journal of Mathematics and Math. Sci., Vol. 2007, Article ID:38530, doi:10.1155/2007/38530 (2007).9 pages.
  • [5] J. Connor, M. Ganichev and V. Kadets, A characterization of Banach spaces with seperable duals via weak statistical convergence, J. Math. Anal. Appl. 244 (2000).251-261.
  • [6] K. Demirci, $\mathcal{I}$ limit superior and limit inferior, Math. Commun. 6 (2001), 165 172.
  • [7] K. Dems, On I-Cauchy sequence, Real Anal. Exchange 30 (2004/2005), 123 128.
  • [8] E. Dundar, C. Cakan, Rough I-Convergence, Demonstratio Mathematica, 47(3)(2014), 638-651.
  • [9] M. Et, On some difference sequence spaces, Doga-Tr. J.of Mathematics 17 (1993), 18-24.
  • [10] M. Et and R. Colak, On some generalized di erence sequence spaces, Soochow Journal Of Mathematics, 21(4) (1995), 377-386.
  • [11] M. Et and M. Basarir, On some new generalized difference sequence spaces, Periodica Mathematica Hungarica 35 (3) (1997), 169-175.
  • [12] M. Et and F. Nuray, $\Delta^m$ Statistical convergence, Indian J.Pure Appl. Math. 32(6) (2001), 961-969.
  • [13] M. Et. and A. Esi, On Kothe- Toeplitz duals of generalized difference sequence spaces, Malaysian Math. Sci. Soc. 23 (2000), 25-32.
  • [14] H. Fast, Sur la Convergence Statistique, Coll. Math. 2 (1951), 241-244.
  • [15] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
  • [16] J. A. Fridy. and C. Orhan, Lacunary statistical convergence, Pac. J. Math.160 (1993), 43-51.
  • [17] H. Gumus and F. Nuray, $\Delta^m$Ideal Convergence, Selcuk J. Appl. Math.12(2) (2011), 101-110.
  • [18] H. Gumus, Lacunary Weak $\mathcal{I}-$Statistical Convergence, Gen. Math. Notes 28(1) (2015), 50-58.
  • [19] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
  • [20] P. Kostyrko, M. Macaj, T. Salat, T. and M. Sleziak,M., $\mathcal{I}-$convergence and extremal $|mathcal{I}-$limit points, Math. Slovaca 55 (2005), 443-464.
  • [21] P. Kostyrko, T. Salat and W. Wilezynski, $\mathcal{I}-$convergence, Real Anal. Exchange, 26, 2 (2000), 669-686.
  • [22] A. Nabiev, S. Pehlivan, M. Gurdal, On I-Cauchy sequence, Taiwanese J. Math. 11 (2) (2007), 569 576.
  • [23] F. Nuray, Lacunary weak statistical convergence, Math. Bohemica, 136(3) (2011), 259-268.
  • [24] S. Pehlivan and T. Karaev, Some results related with statistical convergence and Berezin symbols, Jour. of Math. analysis and Appl. V 299(2) (2004), 333-340.
  • [25] E. Savas $\Delta^m$-strongly summable sequences spaces in 2-normed spaces de ned by ideal convergence and an Orlicz function, Applied Mathematics and Computation 217(1) (2010), 271-276.
  • [26] E. Savas and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), 826-830.
  • [27] O. Talo, E. Dundar, $\mathcal{I}-$-Limit Superior and $\mathcal{I}-$-Limit Inferior for Sequences of Fuzzy Numbers, Konuralp Journal of Mathematics, 4(2) (2016), 1643 172.
There are 27 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Hafize Gümüş This is me

Mikail Et

Publication Date April 1, 2017
Submission Date February 18, 2017
Acceptance Date January 25, 2017
Published in Issue Year 2017 Volume: 5 Issue: 1

Cite

APA Gümüş, H., & Et, M. (2017). A DIFFERENT VIEWPOINT ABOUT THE WEAK CONVERGENCE VIA IDEALS AND $\Delta ^{m}$ SEQUENCES. Konuralp Journal of Mathematics, 5(1), 113-122.
AMA Gümüş H, Et M. A DIFFERENT VIEWPOINT ABOUT THE WEAK CONVERGENCE VIA IDEALS AND $\Delta ^{m}$ SEQUENCES. Konuralp J. Math. April 2017;5(1):113-122.
Chicago Gümüş, Hafize, and Mikail Et. “A DIFFERENT VIEWPOINT ABOUT THE WEAK CONVERGENCE VIA IDEALS AND $\Delta ^{m}$ SEQUENCES”. Konuralp Journal of Mathematics 5, no. 1 (April 2017): 113-22.
EndNote Gümüş H, Et M (April 1, 2017) A DIFFERENT VIEWPOINT ABOUT THE WEAK CONVERGENCE VIA IDEALS AND $\Delta ^{m}$ SEQUENCES. Konuralp Journal of Mathematics 5 1 113–122.
IEEE H. Gümüş and M. Et, “A DIFFERENT VIEWPOINT ABOUT THE WEAK CONVERGENCE VIA IDEALS AND $\Delta ^{m}$ SEQUENCES”, Konuralp J. Math., vol. 5, no. 1, pp. 113–122, 2017.
ISNAD Gümüş, Hafize - Et, Mikail. “A DIFFERENT VIEWPOINT ABOUT THE WEAK CONVERGENCE VIA IDEALS AND $\Delta ^{m}$ SEQUENCES”. Konuralp Journal of Mathematics 5/1 (April 2017), 113-122.
JAMA Gümüş H, Et M. A DIFFERENT VIEWPOINT ABOUT THE WEAK CONVERGENCE VIA IDEALS AND $\Delta ^{m}$ SEQUENCES. Konuralp J. Math. 2017;5:113–122.
MLA Gümüş, Hafize and Mikail Et. “A DIFFERENT VIEWPOINT ABOUT THE WEAK CONVERGENCE VIA IDEALS AND $\Delta ^{m}$ SEQUENCES”. Konuralp Journal of Mathematics, vol. 5, no. 1, 2017, pp. 113-22.
Vancouver Gümüş H, Et M. A DIFFERENT VIEWPOINT ABOUT THE WEAK CONVERGENCE VIA IDEALS AND $\Delta ^{m}$ SEQUENCES. Konuralp J. Math. 2017;5(1):113-22.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.