Year 2020,
Volume: 8 Issue: 1, 30 - 37, 15.04.2020
Nihal Taş
,
Nihal Yılmaz Özgür
References
- [1] Abkar, A. and Gabeleh, M., Results on the existence and convergence of best proximity points, Fixed Point Theory Appl. Art. ID 386037, (2010), 10 pp.
- [2] Abkar, A., Moezzifar, N., Azizi, A. and Shahzad, N., Best proximity point theorems for cyclic generalized proximal contractions, Fixed Point Theory
and Applications, 1 (2016): 66.
- [3] Anuradha, J. and Veeramani, P., Proximal pointwise contraction, Topology Appl. 156 (18) (2009), 2942-2948.
- [4] Caballero, J., Harjani, J. and Sadarangani, K., Contractive-Like mapping principles in ordered metric spaces and application to ordinary differential
equations, Fixed Point Theory Appl. Art. ID 916064, (2010), 14 pp.
- [5] Chandok, S., Some fixed point theorems for (a;b)-admissible Geraghty type contractive mappings and related results, Math. Sci. 9 (2015), 127-135.
- [6] Choudhury, B.S., Asha Kumar, S. and Das, K., Some fixed point theorems in G-metric spaces, Math. Sci. Lett. 1 (1) (2012), 25-31.
- [7] Choudhury, B.S., Maity, P. and Konar, P., A global optimality result using nonself mappings, Opsearch 51 (2) (2014), 312-320.
- [8] Choudhury, B.S., Maity, P. and Konar, P., A global optimality result using geraghty type contraction, Int. J. Optim. Control. Theor. Appl. 4 (2) (2014),
99-104.
- [9] De la Sen, M., Fixed point and best proximity theorems under two classes of integral-type contractive conditions in uniform metric spaces, Fixed Point
Theory Appl. 2010, Art. ID 510974, 12 pp.
- [10] De la Sen, M. and Ibeas, A., Fixed points and best proximity points in contractive cyclic self-maps satisfying constraints in closed integral form with
some applications, Appl. Math. Comput. 219 (10) (2013), 5410-5426.
- [11] Karpagam, S. and Agrawal, S., Best proximity points for cyclic orbital Meir- Keeler contractions, Nonlinear Anal. 74 (2011), 1040-1046.
- [12] Kirk, W.A., Reich, S. and Veeramani, P., Proximal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003), 851-862.
- [13] Lee, H., A Coupled Fixed Point Theorem for Mixed Monotone Mappings on Partial Ordered G-Metric Spaces, Kyungpook Math. J. 54 (2014), 485-500.
- [14] Mohanta, S.K., Some fixed point theorems in G-metric spaces, An. S¸ t. Univ. Ovidius Constant¸a 20 (1) (2012), 285-306.
- [15] Mustafa, Z. and Sims, B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006), 289-297.
- [16] Özgür, N.Y. and Taş, N., Some generalizations of fixed point theorems on S-metric spaces. Essays in Mathematics and Its Applications in Honor of
Vladimir Arnold, New York, Springer, 2016.
- [17] Özgür, N.Y. and Taş, N., Some fixed point theorems on S-metric spaces, Mat. Vesnik 69 (1) (2017) 39-52.
- [18] Özgür, N.Y. and Taş, N., Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci. (Springer) 11
(1) (2017), no. 1, 7-16.
- [19] Özgür, N.Y. and Taş, N., New contractive conditions of integral type on complete S-metric spaces, Math. Sci. (Springer) 11 (3) (2017), 231-240.
- [20] Rahman, M., Sarwar, M. and Rahman, M.U., Fixed point results of Altman integral type mappings in S-metric spaces, Int. J. Anal. Appl. 10 (1) (2016),
58-63.
- [21] Sadiq Basha, S., Global optimal approximate solutions, Optim. Lett. 5 (4) (2011), 639-645.
- [22] Sadiq Basha, S., Best proximity points: global optimal approximate solutions, J. Global Optim. 49 (2011), 15-21.
- [23] Sadiq Basha, S. and Shahzad, N., Common best proximity point theorems: Global minimization of some real-valued multi-objective functions, Journal
of Fixed Point Theory and Applications, 18 (3) (2016), 587-600.
- [24] Sadiq Basha, S., Shahzad, N. and Vetro, C., Best proximity point theorems for proximal cyclic contractions, Journal of Fixed Point Theory and
Applications, 19 (4) (2017), 2647-2661.
- [25] Saha, M. and Dey, D., Fixed point theorems for A-contraction mappings of integral type, J. Nonlinear Sci. Appl. 5 (2012), 84-92.
- [26] Sedghi, S., Shobe, N. and Aliouche, A., A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (3) (2012), 258-266.
- [27] Sedghi, S. and Dung, N.V., Fixed point theorems on S-metric spaces, Mat. Vesnik 66 (1) (2014), 113-124.
Some Global Optimality Results using the Contractive Conditions of Integral Type
Year 2020,
Volume: 8 Issue: 1, 30 - 37, 15.04.2020
Nihal Taş
,
Nihal Yılmaz Özgür
Abstract
In this paper we establish new best proximity point theorems considering a classical global optimization problem of finding the minimum distance between pairs of closed sets using the contractive conditions of integral type on a complete metric space. These results can be used to find optimal approximate solutions by means of some contractive conditions of integral type. Also an illustrative example is given.
References
- [1] Abkar, A. and Gabeleh, M., Results on the existence and convergence of best proximity points, Fixed Point Theory Appl. Art. ID 386037, (2010), 10 pp.
- [2] Abkar, A., Moezzifar, N., Azizi, A. and Shahzad, N., Best proximity point theorems for cyclic generalized proximal contractions, Fixed Point Theory
and Applications, 1 (2016): 66.
- [3] Anuradha, J. and Veeramani, P., Proximal pointwise contraction, Topology Appl. 156 (18) (2009), 2942-2948.
- [4] Caballero, J., Harjani, J. and Sadarangani, K., Contractive-Like mapping principles in ordered metric spaces and application to ordinary differential
equations, Fixed Point Theory Appl. Art. ID 916064, (2010), 14 pp.
- [5] Chandok, S., Some fixed point theorems for (a;b)-admissible Geraghty type contractive mappings and related results, Math. Sci. 9 (2015), 127-135.
- [6] Choudhury, B.S., Asha Kumar, S. and Das, K., Some fixed point theorems in G-metric spaces, Math. Sci. Lett. 1 (1) (2012), 25-31.
- [7] Choudhury, B.S., Maity, P. and Konar, P., A global optimality result using nonself mappings, Opsearch 51 (2) (2014), 312-320.
- [8] Choudhury, B.S., Maity, P. and Konar, P., A global optimality result using geraghty type contraction, Int. J. Optim. Control. Theor. Appl. 4 (2) (2014),
99-104.
- [9] De la Sen, M., Fixed point and best proximity theorems under two classes of integral-type contractive conditions in uniform metric spaces, Fixed Point
Theory Appl. 2010, Art. ID 510974, 12 pp.
- [10] De la Sen, M. and Ibeas, A., Fixed points and best proximity points in contractive cyclic self-maps satisfying constraints in closed integral form with
some applications, Appl. Math. Comput. 219 (10) (2013), 5410-5426.
- [11] Karpagam, S. and Agrawal, S., Best proximity points for cyclic orbital Meir- Keeler contractions, Nonlinear Anal. 74 (2011), 1040-1046.
- [12] Kirk, W.A., Reich, S. and Veeramani, P., Proximal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003), 851-862.
- [13] Lee, H., A Coupled Fixed Point Theorem for Mixed Monotone Mappings on Partial Ordered G-Metric Spaces, Kyungpook Math. J. 54 (2014), 485-500.
- [14] Mohanta, S.K., Some fixed point theorems in G-metric spaces, An. S¸ t. Univ. Ovidius Constant¸a 20 (1) (2012), 285-306.
- [15] Mustafa, Z. and Sims, B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006), 289-297.
- [16] Özgür, N.Y. and Taş, N., Some generalizations of fixed point theorems on S-metric spaces. Essays in Mathematics and Its Applications in Honor of
Vladimir Arnold, New York, Springer, 2016.
- [17] Özgür, N.Y. and Taş, N., Some fixed point theorems on S-metric spaces, Mat. Vesnik 69 (1) (2017) 39-52.
- [18] Özgür, N.Y. and Taş, N., Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci. (Springer) 11
(1) (2017), no. 1, 7-16.
- [19] Özgür, N.Y. and Taş, N., New contractive conditions of integral type on complete S-metric spaces, Math. Sci. (Springer) 11 (3) (2017), 231-240.
- [20] Rahman, M., Sarwar, M. and Rahman, M.U., Fixed point results of Altman integral type mappings in S-metric spaces, Int. J. Anal. Appl. 10 (1) (2016),
58-63.
- [21] Sadiq Basha, S., Global optimal approximate solutions, Optim. Lett. 5 (4) (2011), 639-645.
- [22] Sadiq Basha, S., Best proximity points: global optimal approximate solutions, J. Global Optim. 49 (2011), 15-21.
- [23] Sadiq Basha, S. and Shahzad, N., Common best proximity point theorems: Global minimization of some real-valued multi-objective functions, Journal
of Fixed Point Theory and Applications, 18 (3) (2016), 587-600.
- [24] Sadiq Basha, S., Shahzad, N. and Vetro, C., Best proximity point theorems for proximal cyclic contractions, Journal of Fixed Point Theory and
Applications, 19 (4) (2017), 2647-2661.
- [25] Saha, M. and Dey, D., Fixed point theorems for A-contraction mappings of integral type, J. Nonlinear Sci. Appl. 5 (2012), 84-92.
- [26] Sedghi, S., Shobe, N. and Aliouche, A., A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (3) (2012), 258-266.
- [27] Sedghi, S. and Dung, N.V., Fixed point theorems on S-metric spaces, Mat. Vesnik 66 (1) (2014), 113-124.