Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 1, 30 - 37, 15.04.2020

Abstract

References

  • [1] Abkar, A. and Gabeleh, M., Results on the existence and convergence of best proximity points, Fixed Point Theory Appl. Art. ID 386037, (2010), 10 pp.
  • [2] Abkar, A., Moezzifar, N., Azizi, A. and Shahzad, N., Best proximity point theorems for cyclic generalized proximal contractions, Fixed Point Theory and Applications, 1 (2016): 66.
  • [3] Anuradha, J. and Veeramani, P., Proximal pointwise contraction, Topology Appl. 156 (18) (2009), 2942-2948.
  • [4] Caballero, J., Harjani, J. and Sadarangani, K., Contractive-Like mapping principles in ordered metric spaces and application to ordinary differential equations, Fixed Point Theory Appl. Art. ID 916064, (2010), 14 pp.
  • [5] Chandok, S., Some fixed point theorems for (a;b)-admissible Geraghty type contractive mappings and related results, Math. Sci. 9 (2015), 127-135.
  • [6] Choudhury, B.S., Asha Kumar, S. and Das, K., Some fixed point theorems in G-metric spaces, Math. Sci. Lett. 1 (1) (2012), 25-31.
  • [7] Choudhury, B.S., Maity, P. and Konar, P., A global optimality result using nonself mappings, Opsearch 51 (2) (2014), 312-320.
  • [8] Choudhury, B.S., Maity, P. and Konar, P., A global optimality result using geraghty type contraction, Int. J. Optim. Control. Theor. Appl. 4 (2) (2014), 99-104.
  • [9] De la Sen, M., Fixed point and best proximity theorems under two classes of integral-type contractive conditions in uniform metric spaces, Fixed Point Theory Appl. 2010, Art. ID 510974, 12 pp.
  • [10] De la Sen, M. and Ibeas, A., Fixed points and best proximity points in contractive cyclic self-maps satisfying constraints in closed integral form with some applications, Appl. Math. Comput. 219 (10) (2013), 5410-5426.
  • [11] Karpagam, S. and Agrawal, S., Best proximity points for cyclic orbital Meir- Keeler contractions, Nonlinear Anal. 74 (2011), 1040-1046.
  • [12] Kirk, W.A., Reich, S. and Veeramani, P., Proximal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003), 851-862.
  • [13] Lee, H., A Coupled Fixed Point Theorem for Mixed Monotone Mappings on Partial Ordered G-Metric Spaces, Kyungpook Math. J. 54 (2014), 485-500.
  • [14] Mohanta, S.K., Some fixed point theorems in G-metric spaces, An. S¸ t. Univ. Ovidius Constant¸a 20 (1) (2012), 285-306.
  • [15] Mustafa, Z. and Sims, B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006), 289-297.
  • [16] Özgür, N.Y. and Taş, N., Some generalizations of fixed point theorems on S-metric spaces. Essays in Mathematics and Its Applications in Honor of Vladimir Arnold, New York, Springer, 2016.
  • [17] Özgür, N.Y. and Taş, N., Some fixed point theorems on S-metric spaces, Mat. Vesnik 69 (1) (2017) 39-52.
  • [18] Özgür, N.Y. and Taş, N., Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci. (Springer) 11 (1) (2017), no. 1, 7-16.
  • [19] Özgür, N.Y. and Taş, N., New contractive conditions of integral type on complete S-metric spaces, Math. Sci. (Springer) 11 (3) (2017), 231-240.
  • [20] Rahman, M., Sarwar, M. and Rahman, M.U., Fixed point results of Altman integral type mappings in S-metric spaces, Int. J. Anal. Appl. 10 (1) (2016), 58-63.
  • [21] Sadiq Basha, S., Global optimal approximate solutions, Optim. Lett. 5 (4) (2011), 639-645.
  • [22] Sadiq Basha, S., Best proximity points: global optimal approximate solutions, J. Global Optim. 49 (2011), 15-21.
  • [23] Sadiq Basha, S. and Shahzad, N., Common best proximity point theorems: Global minimization of some real-valued multi-objective functions, Journal of Fixed Point Theory and Applications, 18 (3) (2016), 587-600.
  • [24] Sadiq Basha, S., Shahzad, N. and Vetro, C., Best proximity point theorems for proximal cyclic contractions, Journal of Fixed Point Theory and Applications, 19 (4) (2017), 2647-2661.
  • [25] Saha, M. and Dey, D., Fixed point theorems for A-contraction mappings of integral type, J. Nonlinear Sci. Appl. 5 (2012), 84-92.
  • [26] Sedghi, S., Shobe, N. and Aliouche, A., A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (3) (2012), 258-266.
  • [27] Sedghi, S. and Dung, N.V., Fixed point theorems on S-metric spaces, Mat. Vesnik 66 (1) (2014), 113-124.

Some Global Optimality Results using the Contractive Conditions of Integral Type

Year 2020, Volume: 8 Issue: 1, 30 - 37, 15.04.2020

Abstract

In this paper we establish new best proximity point theorems considering a classical global optimization problem of finding the minimum distance between pairs of closed sets using the contractive conditions of integral type on a complete metric space. These results can be used to find optimal approximate solutions by means of some contractive conditions of integral type. Also an illustrative example is given.



References

  • [1] Abkar, A. and Gabeleh, M., Results on the existence and convergence of best proximity points, Fixed Point Theory Appl. Art. ID 386037, (2010), 10 pp.
  • [2] Abkar, A., Moezzifar, N., Azizi, A. and Shahzad, N., Best proximity point theorems for cyclic generalized proximal contractions, Fixed Point Theory and Applications, 1 (2016): 66.
  • [3] Anuradha, J. and Veeramani, P., Proximal pointwise contraction, Topology Appl. 156 (18) (2009), 2942-2948.
  • [4] Caballero, J., Harjani, J. and Sadarangani, K., Contractive-Like mapping principles in ordered metric spaces and application to ordinary differential equations, Fixed Point Theory Appl. Art. ID 916064, (2010), 14 pp.
  • [5] Chandok, S., Some fixed point theorems for (a;b)-admissible Geraghty type contractive mappings and related results, Math. Sci. 9 (2015), 127-135.
  • [6] Choudhury, B.S., Asha Kumar, S. and Das, K., Some fixed point theorems in G-metric spaces, Math. Sci. Lett. 1 (1) (2012), 25-31.
  • [7] Choudhury, B.S., Maity, P. and Konar, P., A global optimality result using nonself mappings, Opsearch 51 (2) (2014), 312-320.
  • [8] Choudhury, B.S., Maity, P. and Konar, P., A global optimality result using geraghty type contraction, Int. J. Optim. Control. Theor. Appl. 4 (2) (2014), 99-104.
  • [9] De la Sen, M., Fixed point and best proximity theorems under two classes of integral-type contractive conditions in uniform metric spaces, Fixed Point Theory Appl. 2010, Art. ID 510974, 12 pp.
  • [10] De la Sen, M. and Ibeas, A., Fixed points and best proximity points in contractive cyclic self-maps satisfying constraints in closed integral form with some applications, Appl. Math. Comput. 219 (10) (2013), 5410-5426.
  • [11] Karpagam, S. and Agrawal, S., Best proximity points for cyclic orbital Meir- Keeler contractions, Nonlinear Anal. 74 (2011), 1040-1046.
  • [12] Kirk, W.A., Reich, S. and Veeramani, P., Proximal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003), 851-862.
  • [13] Lee, H., A Coupled Fixed Point Theorem for Mixed Monotone Mappings on Partial Ordered G-Metric Spaces, Kyungpook Math. J. 54 (2014), 485-500.
  • [14] Mohanta, S.K., Some fixed point theorems in G-metric spaces, An. S¸ t. Univ. Ovidius Constant¸a 20 (1) (2012), 285-306.
  • [15] Mustafa, Z. and Sims, B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006), 289-297.
  • [16] Özgür, N.Y. and Taş, N., Some generalizations of fixed point theorems on S-metric spaces. Essays in Mathematics and Its Applications in Honor of Vladimir Arnold, New York, Springer, 2016.
  • [17] Özgür, N.Y. and Taş, N., Some fixed point theorems on S-metric spaces, Mat. Vesnik 69 (1) (2017) 39-52.
  • [18] Özgür, N.Y. and Taş, N., Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci. (Springer) 11 (1) (2017), no. 1, 7-16.
  • [19] Özgür, N.Y. and Taş, N., New contractive conditions of integral type on complete S-metric spaces, Math. Sci. (Springer) 11 (3) (2017), 231-240.
  • [20] Rahman, M., Sarwar, M. and Rahman, M.U., Fixed point results of Altman integral type mappings in S-metric spaces, Int. J. Anal. Appl. 10 (1) (2016), 58-63.
  • [21] Sadiq Basha, S., Global optimal approximate solutions, Optim. Lett. 5 (4) (2011), 639-645.
  • [22] Sadiq Basha, S., Best proximity points: global optimal approximate solutions, J. Global Optim. 49 (2011), 15-21.
  • [23] Sadiq Basha, S. and Shahzad, N., Common best proximity point theorems: Global minimization of some real-valued multi-objective functions, Journal of Fixed Point Theory and Applications, 18 (3) (2016), 587-600.
  • [24] Sadiq Basha, S., Shahzad, N. and Vetro, C., Best proximity point theorems for proximal cyclic contractions, Journal of Fixed Point Theory and Applications, 19 (4) (2017), 2647-2661.
  • [25] Saha, M. and Dey, D., Fixed point theorems for A-contraction mappings of integral type, J. Nonlinear Sci. Appl. 5 (2012), 84-92.
  • [26] Sedghi, S., Shobe, N. and Aliouche, A., A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (3) (2012), 258-266.
  • [27] Sedghi, S. and Dung, N.V., Fixed point theorems on S-metric spaces, Mat. Vesnik 66 (1) (2014), 113-124.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nihal Taş 0000-0002-4535-4019

Nihal Yılmaz Özgür 0000-0002-8152-1830

Publication Date April 15, 2020
Submission Date February 6, 2019
Acceptance Date February 25, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Taş, N., & Özgür, N. Y. (2020). Some Global Optimality Results using the Contractive Conditions of Integral Type. Konuralp Journal of Mathematics, 8(1), 30-37.
AMA Taş N, Özgür NY. Some Global Optimality Results using the Contractive Conditions of Integral Type. Konuralp J. Math. April 2020;8(1):30-37.
Chicago Taş, Nihal, and Nihal Yılmaz Özgür. “Some Global Optimality Results Using the Contractive Conditions of Integral Type”. Konuralp Journal of Mathematics 8, no. 1 (April 2020): 30-37.
EndNote Taş N, Özgür NY (April 1, 2020) Some Global Optimality Results using the Contractive Conditions of Integral Type. Konuralp Journal of Mathematics 8 1 30–37.
IEEE N. Taş and N. Y. Özgür, “Some Global Optimality Results using the Contractive Conditions of Integral Type”, Konuralp J. Math., vol. 8, no. 1, pp. 30–37, 2020.
ISNAD Taş, Nihal - Özgür, Nihal Yılmaz. “Some Global Optimality Results Using the Contractive Conditions of Integral Type”. Konuralp Journal of Mathematics 8/1 (April 2020), 30-37.
JAMA Taş N, Özgür NY. Some Global Optimality Results using the Contractive Conditions of Integral Type. Konuralp J. Math. 2020;8:30–37.
MLA Taş, Nihal and Nihal Yılmaz Özgür. “Some Global Optimality Results Using the Contractive Conditions of Integral Type”. Konuralp Journal of Mathematics, vol. 8, no. 1, 2020, pp. 30-37.
Vancouver Taş N, Özgür NY. Some Global Optimality Results using the Contractive Conditions of Integral Type. Konuralp J. Math. 2020;8(1):30-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.