Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 8 Sayı: 2, 384 - 390, 27.10.2020

Öz

Kaynakça

  • [1] I. Akkus and O. Kecilioglu, Split Fibonacci and Lucas octonions. Adv. Appl. Clifford Algebras Vol.25, No.3 (2015), 517–525.
  • [2] J. Baez, The octonions, Bull. Amer. Math. Soc. Vol.39 No.2 (2002), 145-205.
  • [3] G. Bilgici, U. Tokes¸er and Z. U¨ nal, Fibonacci and Lucas Sedenions. J. Integer Seq., Vol.20, 17.1.8, (2017), 11p.
  • [4] P. Catarino, k-Pell-Lukas and Modified k-Pell sedenions. Asian-Eur. J. Math. (2018), S1793557119500189.
  • [5] R. E. Cawagas, On the structure and zero divisors of the Cayley-Dickson sedenion algebra, Discuss. Math. Gen. Algebra Appl., Vol.24, (2004), 251–265.
  • [6] K. Imaeda and M. Imaeda, Sedenions: algebra and analysis, Applied Mathematics and Computation, Vol.115, (2000), 77-88.
  • [7] O. Kecilioglu and I. Akkus, The Fibonacci octonions, Adv. Appl. Clifford Algebra, Vol.25, (2015), 151–158.
  • [8] R. Serodio, On octonionic polynomials. Adv. Appl. Clifford Algebras Vol.17, No.2 (2007), 245–258.
  • [9] A. G. Shannon, P. G. Anderson, and A. F. Horadam, Properties of Cordonnier, Perrin and van der laan numbers, International Journal of Mathematical Education in Science and Technology, Vol.37, No.7 (2006), 825-831.
  • [10] Y. Tasyurdu and A. Akpınar, Padovan and Pell-Padovan Octanions. Turk. J. Math. Comput. Sci., Vol.11(Special Issue), (2019), 114–222.
  • [11] Y. Tian, Matrix representations of octonions and their applications. Adv. Appl. Clifford Algebras Vol.10, No.1 (2000), 61–90.

Perrin Octonions and Perrin Sedenions

Yıl 2020, Cilt: 8 Sayı: 2, 384 - 390, 27.10.2020

Öz

In this study, we introduce new classes of octonion and sedenion numbers associated with Perrin numbers. We define Perrin octonions and Perrin sedenions by using the Perrin numbers. We give some relationship between Perrin octonions, Perrin sedenions and Perrin numbers. Moreover we obtain the generating functions, Binet formulas and sums formulas of them.                                                                                                                                                                                                                                                                       

Kaynakça

  • [1] I. Akkus and O. Kecilioglu, Split Fibonacci and Lucas octonions. Adv. Appl. Clifford Algebras Vol.25, No.3 (2015), 517–525.
  • [2] J. Baez, The octonions, Bull. Amer. Math. Soc. Vol.39 No.2 (2002), 145-205.
  • [3] G. Bilgici, U. Tokes¸er and Z. U¨ nal, Fibonacci and Lucas Sedenions. J. Integer Seq., Vol.20, 17.1.8, (2017), 11p.
  • [4] P. Catarino, k-Pell-Lukas and Modified k-Pell sedenions. Asian-Eur. J. Math. (2018), S1793557119500189.
  • [5] R. E. Cawagas, On the structure and zero divisors of the Cayley-Dickson sedenion algebra, Discuss. Math. Gen. Algebra Appl., Vol.24, (2004), 251–265.
  • [6] K. Imaeda and M. Imaeda, Sedenions: algebra and analysis, Applied Mathematics and Computation, Vol.115, (2000), 77-88.
  • [7] O. Kecilioglu and I. Akkus, The Fibonacci octonions, Adv. Appl. Clifford Algebra, Vol.25, (2015), 151–158.
  • [8] R. Serodio, On octonionic polynomials. Adv. Appl. Clifford Algebras Vol.17, No.2 (2007), 245–258.
  • [9] A. G. Shannon, P. G. Anderson, and A. F. Horadam, Properties of Cordonnier, Perrin and van der laan numbers, International Journal of Mathematical Education in Science and Technology, Vol.37, No.7 (2006), 825-831.
  • [10] Y. Tasyurdu and A. Akpınar, Padovan and Pell-Padovan Octanions. Turk. J. Math. Comput. Sci., Vol.11(Special Issue), (2019), 114–222.
  • [11] Y. Tian, Matrix representations of octonions and their applications. Adv. Appl. Clifford Algebras Vol.10, No.1 (2000), 61–90.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Yasemin Taşyurdu 0000-0002-9011-8269

Ayşe Akpınar

Yayımlanma Tarihi 27 Ekim 2020
Gönderilme Tarihi 3 Eylül 2019
Kabul Tarihi 22 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 2

Kaynak Göster

APA Taşyurdu, Y., & Akpınar, A. (2020). Perrin Octonions and Perrin Sedenions. Konuralp Journal of Mathematics, 8(2), 384-390.
AMA Taşyurdu Y, Akpınar A. Perrin Octonions and Perrin Sedenions. Konuralp J. Math. Ekim 2020;8(2):384-390.
Chicago Taşyurdu, Yasemin, ve Ayşe Akpınar. “Perrin Octonions and Perrin Sedenions”. Konuralp Journal of Mathematics 8, sy. 2 (Ekim 2020): 384-90.
EndNote Taşyurdu Y, Akpınar A (01 Ekim 2020) Perrin Octonions and Perrin Sedenions. Konuralp Journal of Mathematics 8 2 384–390.
IEEE Y. Taşyurdu ve A. Akpınar, “Perrin Octonions and Perrin Sedenions”, Konuralp J. Math., c. 8, sy. 2, ss. 384–390, 2020.
ISNAD Taşyurdu, Yasemin - Akpınar, Ayşe. “Perrin Octonions and Perrin Sedenions”. Konuralp Journal of Mathematics 8/2 (Ekim 2020), 384-390.
JAMA Taşyurdu Y, Akpınar A. Perrin Octonions and Perrin Sedenions. Konuralp J. Math. 2020;8:384–390.
MLA Taşyurdu, Yasemin ve Ayşe Akpınar. “Perrin Octonions and Perrin Sedenions”. Konuralp Journal of Mathematics, c. 8, sy. 2, 2020, ss. 384-90.
Vancouver Taşyurdu Y, Akpınar A. Perrin Octonions and Perrin Sedenions. Konuralp J. Math. 2020;8(2):384-90.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.