Araştırma Makalesi
BibTex RIS Kaynak Göster

Weakly Poor Modules

Yıl 2022, Cilt: 10 Sayı: 2, 250 - 254, 31.10.2022

Öz

In this paper, weakly poor modules are introduced as modules whose injectivity domains are contained in the class of all copure-split modules. This notion gives a generalization of both poor modules and copure-injectively poor modules. Properties involving weakly poor modules as well as examples that show the relations between weakly poor modules, poor modules, impecunious modules and copure-injectively poor modules are given. Rings over which every module is weakly poor are right CDS. A ring over which there is a cyclic projective weakly poor module is proved to be weakly poor. Moreover, the characterizations of weakly poor abelian groups is given. It states that an abelian group $A$ is weakly poor if and only if $A$ is impecunious if and only if for every prime integer $p$, $A$ has a direct summand isomorphic to $\mathbb{Z}_{p^{n}}$ for some positive integer $n$. Consequently, an example of a weakly poor abelian group which is neither poor nor copure-injectively poor is given so that the generalization defined is proper.

Kaynakça

  • [1] Alag¨oz, Y., Relative subcopure-injective modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1), 832-846 (2020).
  • [2] Anderson, F.W., Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York, 1974.
  • [3] Alahmadi, A. N., Alkan, M., L´opez-Permouth, S. R., Poor modules: The opposite of injectivity, Glasg. Math. J., 52(A), 7-17 (2010).
  • [4] Alizade, R., B¨uy¨ukas¸ık, E., Poor and pi-poor abelian groups, Comm. Algebra, 45(1), 420-427 (2017).
  • [5] Demirci, Y. M., Modules and abelian groups with a bounded domain of injectivity, J. Algebra Appl., 16(2), 1850108 (2018).
  • [6] Demirci, Y. M., Nis¸ancı T¨urkmen, B., T¨urkmen, E., Rings with modules having a restricted injectivity domain, S˜ao Paulo J. Math. Sci. 14, 312-326 (2020).
  • [7] Fieldhouse, D. J., Pure theories, Math. Ann., 184, 1-18 (1969).
  • [8] Harmanci, A., Lo´pez-Permouth, S. R., U¨ ngo¨r, B., On the pure-injectivity profile of a ring, Comm. Algebra, 43(11), 4984-5002 (2015).
  • [9] Hiremath, V. A., Cofinitely generated and cofinitely related modules, Acta Math. Acad. Sci. Hungar., 39, 1-9 (1982).
  • [10] Hiremath (Madurai), V. A., Copure Submodules, Acta Math. Hung., 44(1-2), 3-12 (1984).
  • [11] Hiremath (Madurai), V. A., Copure-injective modules, Indian J. Pure Appl. Math., 20(3), 250-259 (1989).
  • [12] Jans, J. P., On co-noetherian rings, J. London Math. Soc., 1, 588-590 (1969).
  • [13] Maurya, S. K., Toksoy, S. E., Copure-direct-injective modules, J. Algebra Appl., 21(9), 2250187 (2022).
  • [14] Mohamed, S. H., M¨uller, B. J., Continuous and discrete modules, London Mathematical Society Lecture Note 147 (Cambridge University Press), Cambridge 1990.
  • [15] Sharpe, D.W., Vamos, P., Injective Modules, Cambridge Tracts in Mathematics and Mathematical Physics, 62, Cambridge. 1972.
  • [16] Toksoy, S. E., Modules with minimal copure-injectivity domain, J. Algebra Appl., 18(11), 1950201 (2019).
  • [17] Vamos, P., The dual of the notion of “finitely generated”, J. London Math. Soc., 43, 643-646 (1968).
  • [18] Vamos, P., Classical rings, J. Algebra, 34, 114-129 (1975).
Yıl 2022, Cilt: 10 Sayı: 2, 250 - 254, 31.10.2022

Öz

Kaynakça

  • [1] Alag¨oz, Y., Relative subcopure-injective modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1), 832-846 (2020).
  • [2] Anderson, F.W., Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York, 1974.
  • [3] Alahmadi, A. N., Alkan, M., L´opez-Permouth, S. R., Poor modules: The opposite of injectivity, Glasg. Math. J., 52(A), 7-17 (2010).
  • [4] Alizade, R., B¨uy¨ukas¸ık, E., Poor and pi-poor abelian groups, Comm. Algebra, 45(1), 420-427 (2017).
  • [5] Demirci, Y. M., Modules and abelian groups with a bounded domain of injectivity, J. Algebra Appl., 16(2), 1850108 (2018).
  • [6] Demirci, Y. M., Nis¸ancı T¨urkmen, B., T¨urkmen, E., Rings with modules having a restricted injectivity domain, S˜ao Paulo J. Math. Sci. 14, 312-326 (2020).
  • [7] Fieldhouse, D. J., Pure theories, Math. Ann., 184, 1-18 (1969).
  • [8] Harmanci, A., Lo´pez-Permouth, S. R., U¨ ngo¨r, B., On the pure-injectivity profile of a ring, Comm. Algebra, 43(11), 4984-5002 (2015).
  • [9] Hiremath, V. A., Cofinitely generated and cofinitely related modules, Acta Math. Acad. Sci. Hungar., 39, 1-9 (1982).
  • [10] Hiremath (Madurai), V. A., Copure Submodules, Acta Math. Hung., 44(1-2), 3-12 (1984).
  • [11] Hiremath (Madurai), V. A., Copure-injective modules, Indian J. Pure Appl. Math., 20(3), 250-259 (1989).
  • [12] Jans, J. P., On co-noetherian rings, J. London Math. Soc., 1, 588-590 (1969).
  • [13] Maurya, S. K., Toksoy, S. E., Copure-direct-injective modules, J. Algebra Appl., 21(9), 2250187 (2022).
  • [14] Mohamed, S. H., M¨uller, B. J., Continuous and discrete modules, London Mathematical Society Lecture Note 147 (Cambridge University Press), Cambridge 1990.
  • [15] Sharpe, D.W., Vamos, P., Injective Modules, Cambridge Tracts in Mathematics and Mathematical Physics, 62, Cambridge. 1972.
  • [16] Toksoy, S. E., Modules with minimal copure-injectivity domain, J. Algebra Appl., 18(11), 1950201 (2019).
  • [17] Vamos, P., The dual of the notion of “finitely generated”, J. London Math. Soc., 43, 643-646 (1968).
  • [18] Vamos, P., Classical rings, J. Algebra, 34, 114-129 (1975).
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Yusuf Alagöz

Yayımlanma Tarihi 31 Ekim 2022
Gönderilme Tarihi 10 Mayıs 2022
Kabul Tarihi 13 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 2

Kaynak Göster

APA Alagöz, Y. (2022). Weakly Poor Modules. Konuralp Journal of Mathematics, 10(2), 250-254.
AMA Alagöz Y. Weakly Poor Modules. Konuralp J. Math. Ekim 2022;10(2):250-254.
Chicago Alagöz, Yusuf. “Weakly Poor Modules”. Konuralp Journal of Mathematics 10, sy. 2 (Ekim 2022): 250-54.
EndNote Alagöz Y (01 Ekim 2022) Weakly Poor Modules. Konuralp Journal of Mathematics 10 2 250–254.
IEEE Y. Alagöz, “Weakly Poor Modules”, Konuralp J. Math., c. 10, sy. 2, ss. 250–254, 2022.
ISNAD Alagöz, Yusuf. “Weakly Poor Modules”. Konuralp Journal of Mathematics 10/2 (Ekim 2022), 250-254.
JAMA Alagöz Y. Weakly Poor Modules. Konuralp J. Math. 2022;10:250–254.
MLA Alagöz, Yusuf. “Weakly Poor Modules”. Konuralp Journal of Mathematics, c. 10, sy. 2, 2022, ss. 250-4.
Vancouver Alagöz Y. Weakly Poor Modules. Konuralp J. Math. 2022;10(2):250-4.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.