Araştırma Makalesi
BibTex RIS Kaynak Göster

Wintgen Inequalities for Submanifolds of $\delta$-Lorentzian Trans-Sasakian Space Form

Yıl 2023, Cilt: 11 Sayı: 1, 52 - 60, 30.04.2023

Öz

The outline of this research article is that, $\delta$-Lorentzian trans Sasakian manifolds with a semi-symmetric-metric connection (briefly say $SSM$) have been investigated. Indeed, we obtain the expressions for Riemannian curvature tensor $\bar{R}$, Ricci curvature tensors $\bar{Ric}$ and scalar curvature $\bar{r}$ of the $\delta$-Lorentzian trans-Sasakian manifolds with a $SSM$ connection. Mainly, we discuss the generalized Wintgen inequalities for submanifolds in $\delta$-Lorentzian trans-Sasakian space form with a $SSM$ connection. Furthermore, we examine the generalized Wintgen inequality for submanifolds of $\delta$-Lorentzian trans-Sasakian space form.

Kaynakça

  • [1] T. Takahashi, Sasakian manifolds with Pseudo -Riemannian metric, Tohoku Math.J. 21 (1969),271–290.
  • [2] A. Bejancu and K. L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math. Math. Sci. 16 (1993), no. 3, 545–556.
  • [3] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Science 2 (1989), 151–156.
  • [4] H. Gill and K. K. Dube, Generalized CR- Submanifolds of a trans Lorentzian para Sasakian manifold, Proc. Nat. Acad. Sci. India Sec. A Phys. 2 (2006), 119–124.
  • [5] S. S. Pujar and V. J. Khairnar, On Lorentzian trans-Sasakian manifold-I, Int.J.of Ultra Sciences of Physical Sciences 23(1) (2011),53–66.
  • [6] M. D. Siddiqi, A. Haseeb and M. Ahmad, A Note On Generalized Ricci-Recurrent (ε,δ)- Trans-Sasakian Manifolds, Palestine J. Math. 4(1) (2015), 156–163
  • [7] M. M. Tripathi, E. Kilic, S. Y. Perktas and S. Keles, Indefinite almost para-contact metric manifolds, Int. J. Math. and Math. Sci. (2010), art. id 846195, pp. 19.
  • [8] S. M. Bhati, On weakly Ricci φ-symmetric δ-Lorentzian trans Sasakian manifolds, Bull. Math. Anal. Appl. 5(1) (2013), 36–43.
  • [9] A. Haseeb, A. Ahamd and M. D. Siddiqi, On contact CR-submanifolds of a δ-Lorentzian trans-Sasakian manifold, Global J. Adv. Res. Class. Mod. Geom. 6(2) (2017), 73–82.
  • [10] A. Friedmann and J. A. Schouten, Uber die Geometric der halbsymmetrischen Ubertragung, Math. Z. 21 (1924), 211–223.
  • [11] E. Bartolotti, Sulla geometria della variata a connection affine. Ann. di Mat. 4(8) (1930), 53–101.
  • [12] H. A. Hayden, Subspaces of space with torsion, Proc. London Math. Soc. 34 (1932), 27–50.
  • [13] K. Yano, On semi-symmetric metric connections, Revue Roumaine De Math. Pures Appl. 15 (1970), 1579–1586.
  • [14] I. E. Hirica and L. Nicolescu, Conformal connections on Lyra manifolds, ˘ Balkan J. Geom. Appl. 13 (2008), 43–49.
  • [15] A. Haseeb, M. A. Khan and M. D. Siddiqi, Some results on an (ε)- Kenmotsu manifolds with a semi-symmetric semi- metric connection, Acta Mathematica Universitatis Comenianae 85(1) (2016), 9–20.
  • [16] G. Pathak and U. C. De, On a semi-symmetric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc. 94 (2002), no. 4, 319–324.
  • [17] A. Sharfuddin and S. I. Hussain, Semi-symmetric metric connections in almost contact manifolds, Tensor (N.S.) 30 (1976), 133–139.
  • [18] M. D. Siddiqi, M. Ahmad and J. P. Ojha, CR-Submanifolds of a nearly Trans-Hyperbolic Sasakian manifold with a semi-symmetric-non-metric connection, African Diaspora Journal of Math., N.S., 17(1) (2012), 93–105.
  • [19] M. M. Tripathi, On a semi-symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16 (1999), 67–71.
  • [20] P. Wintgen, Sur linlit Chen-Wilmore, C. R. Acad. Sci. Paris Ser. A-B 288 (1979), A993–A995.
  • [21] I. V. Guadalupe and L. Rodriguez, Normal curvature of surfaces in space forms, Pacific J. Math. 106 (1983), 95–103.
  • [22] J. Ge and Z. Tang, A proof of the DDVV conjecture and its equality case, Pacific J. Math. 237 (2009), 87–95.
  • [23] I. Mihai, On the generalized Wintgen inequality for lagrangian submanifolds in complex space form, Nonlinear Analysis, 95 (2014), 714–720.
  • [24] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math.J. 21 (1969), 21–38.
  • [25] A. Gray and L. M. Harvella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123(4) (1980), 35–58.
  • [26] J. C. Marrero, The local structure of Trans-Sasakian manifolds, Annali di Mat. Pura ed Appl. 162 (1992), 77–86.
  • [27] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture note in Mathematics 509, (Springer-Verlag, Berlin-New York, 1976).
  • [28] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187–193
  • [29] Z. Lu, Normal scalar curvature conjecture and its applications, J. Fucnt. Anal. 261 (2011), 1284–1308
Yıl 2023, Cilt: 11 Sayı: 1, 52 - 60, 30.04.2023

Öz

Kaynakça

  • [1] T. Takahashi, Sasakian manifolds with Pseudo -Riemannian metric, Tohoku Math.J. 21 (1969),271–290.
  • [2] A. Bejancu and K. L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math. Math. Sci. 16 (1993), no. 3, 545–556.
  • [3] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Science 2 (1989), 151–156.
  • [4] H. Gill and K. K. Dube, Generalized CR- Submanifolds of a trans Lorentzian para Sasakian manifold, Proc. Nat. Acad. Sci. India Sec. A Phys. 2 (2006), 119–124.
  • [5] S. S. Pujar and V. J. Khairnar, On Lorentzian trans-Sasakian manifold-I, Int.J.of Ultra Sciences of Physical Sciences 23(1) (2011),53–66.
  • [6] M. D. Siddiqi, A. Haseeb and M. Ahmad, A Note On Generalized Ricci-Recurrent (ε,δ)- Trans-Sasakian Manifolds, Palestine J. Math. 4(1) (2015), 156–163
  • [7] M. M. Tripathi, E. Kilic, S. Y. Perktas and S. Keles, Indefinite almost para-contact metric manifolds, Int. J. Math. and Math. Sci. (2010), art. id 846195, pp. 19.
  • [8] S. M. Bhati, On weakly Ricci φ-symmetric δ-Lorentzian trans Sasakian manifolds, Bull. Math. Anal. Appl. 5(1) (2013), 36–43.
  • [9] A. Haseeb, A. Ahamd and M. D. Siddiqi, On contact CR-submanifolds of a δ-Lorentzian trans-Sasakian manifold, Global J. Adv. Res. Class. Mod. Geom. 6(2) (2017), 73–82.
  • [10] A. Friedmann and J. A. Schouten, Uber die Geometric der halbsymmetrischen Ubertragung, Math. Z. 21 (1924), 211–223.
  • [11] E. Bartolotti, Sulla geometria della variata a connection affine. Ann. di Mat. 4(8) (1930), 53–101.
  • [12] H. A. Hayden, Subspaces of space with torsion, Proc. London Math. Soc. 34 (1932), 27–50.
  • [13] K. Yano, On semi-symmetric metric connections, Revue Roumaine De Math. Pures Appl. 15 (1970), 1579–1586.
  • [14] I. E. Hirica and L. Nicolescu, Conformal connections on Lyra manifolds, ˘ Balkan J. Geom. Appl. 13 (2008), 43–49.
  • [15] A. Haseeb, M. A. Khan and M. D. Siddiqi, Some results on an (ε)- Kenmotsu manifolds with a semi-symmetric semi- metric connection, Acta Mathematica Universitatis Comenianae 85(1) (2016), 9–20.
  • [16] G. Pathak and U. C. De, On a semi-symmetric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc. 94 (2002), no. 4, 319–324.
  • [17] A. Sharfuddin and S. I. Hussain, Semi-symmetric metric connections in almost contact manifolds, Tensor (N.S.) 30 (1976), 133–139.
  • [18] M. D. Siddiqi, M. Ahmad and J. P. Ojha, CR-Submanifolds of a nearly Trans-Hyperbolic Sasakian manifold with a semi-symmetric-non-metric connection, African Diaspora Journal of Math., N.S., 17(1) (2012), 93–105.
  • [19] M. M. Tripathi, On a semi-symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16 (1999), 67–71.
  • [20] P. Wintgen, Sur linlit Chen-Wilmore, C. R. Acad. Sci. Paris Ser. A-B 288 (1979), A993–A995.
  • [21] I. V. Guadalupe and L. Rodriguez, Normal curvature of surfaces in space forms, Pacific J. Math. 106 (1983), 95–103.
  • [22] J. Ge and Z. Tang, A proof of the DDVV conjecture and its equality case, Pacific J. Math. 237 (2009), 87–95.
  • [23] I. Mihai, On the generalized Wintgen inequality for lagrangian submanifolds in complex space form, Nonlinear Analysis, 95 (2014), 714–720.
  • [24] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math.J. 21 (1969), 21–38.
  • [25] A. Gray and L. M. Harvella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123(4) (1980), 35–58.
  • [26] J. C. Marrero, The local structure of Trans-Sasakian manifolds, Annali di Mat. Pura ed Appl. 162 (1992), 77–86.
  • [27] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture note in Mathematics 509, (Springer-Verlag, Berlin-New York, 1976).
  • [28] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187–193
  • [29] Z. Lu, Normal scalar curvature conjecture and its applications, J. Fucnt. Anal. 261 (2011), 1284–1308
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Oğuzhan Bahadır

Yayımlanma Tarihi 30 Nisan 2023
Gönderilme Tarihi 12 Mayıs 2022
Kabul Tarihi 1 Eylül 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 1

Kaynak Göster

APA Bahadır, O. (2023). Wintgen Inequalities for Submanifolds of $\delta$-Lorentzian Trans-Sasakian Space Form. Konuralp Journal of Mathematics, 11(1), 52-60.
AMA Bahadır O. Wintgen Inequalities for Submanifolds of $\delta$-Lorentzian Trans-Sasakian Space Form. Konuralp J. Math. Nisan 2023;11(1):52-60.
Chicago Bahadır, Oğuzhan. “Wintgen Inequalities for Submanifolds of $\delta$-Lorentzian Trans-Sasakian Space Form”. Konuralp Journal of Mathematics 11, sy. 1 (Nisan 2023): 52-60.
EndNote Bahadır O (01 Nisan 2023) Wintgen Inequalities for Submanifolds of $\delta$-Lorentzian Trans-Sasakian Space Form. Konuralp Journal of Mathematics 11 1 52–60.
IEEE O. Bahadır, “Wintgen Inequalities for Submanifolds of $\delta$-Lorentzian Trans-Sasakian Space Form”, Konuralp J. Math., c. 11, sy. 1, ss. 52–60, 2023.
ISNAD Bahadır, Oğuzhan. “Wintgen Inequalities for Submanifolds of $\delta$-Lorentzian Trans-Sasakian Space Form”. Konuralp Journal of Mathematics 11/1 (Nisan 2023), 52-60.
JAMA Bahadır O. Wintgen Inequalities for Submanifolds of $\delta$-Lorentzian Trans-Sasakian Space Form. Konuralp J. Math. 2023;11:52–60.
MLA Bahadır, Oğuzhan. “Wintgen Inequalities for Submanifolds of $\delta$-Lorentzian Trans-Sasakian Space Form”. Konuralp Journal of Mathematics, c. 11, sy. 1, 2023, ss. 52-60.
Vancouver Bahadır O. Wintgen Inequalities for Submanifolds of $\delta$-Lorentzian Trans-Sasakian Space Form. Konuralp J. Math. 2023;11(1):52-60.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.